Precipitation Detection Skill over Arbitrary Surfaces from AMSU-B/MHS
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Motivation

Passive microwave remote sensing of frozen precipitation will be a key component
of the Global Precipitation Measurement (GPM) mission. Compared to rain,
additional difficulties are present in the form of high spatial and temporal
variability of the surface emissivity over the high latitudes, as well as additional
complexities in modeling the distribution and electromagnetic properties of
frozen hydrometeors. Skofronick-Jackson et al. (2004), Noh et al. (2006), and Kim
et al. (2008) establish the physical basis for using the channels surrounding the
183.3 GHz water vapor absorption line to mask the surface while still being
sensitive to the scattering from ice particles in falling snow. This work
demonstrates the skill of the channels available on the AMSU-B/MHS instruments
in discriminating precipitation (as indicated by CloudSat) from non-precipitating
scenes.

Emissivity Model

Over non-frozen ocean surfaces, we use the FASTEM4 model (Liu et al. 2011)
which parameterizes emissivity as a function of frequency, angle, polarization,
wind speed, and temperature. Over land and sea ice, we use a database of
emissivity retrievals from AMSU-B and MHS under clear-sky conditions to
create an empirical emissivity model for each 0.5° grid box for which at least
100 emissivity retrievals were available during 2007. The empirical model
follows the formula: "'

E(f) = u(f)+ () D A()x,

where p and o are respectively the ar'1:r||ual mean and stand deviation of
emissivity and A; is the ith empirical orthogonal function (EOF) of emissivity. The
percent of 3-frequency variance explained by the 15t component is shown in
Figure 1 and is quite high in most areas.

Retrieval Method

Detection of precipitation with a radiometer fundamentally relies upon
precipitation producing a unique radiometric signature that cannot be explained
by realistic combinations of surface and atmospheric parameters. This can be
formalized by defining a cost function:
©=(y— f(R)"S; (y = f(%)) + (X —x,)"S7 (& = x,)

where a set of surface and non-precipitation atmospheric parameters (x) are
adjusted so as to minimize the departure of simulated from observed brightness
temperatures and the departure of the surface and atmospheric parameters from
realistic values. This method is identical to that used by Bytheway and Kummerow
(2010) to screen for precipitation over selected land surfaces with AMSR-E; in this
study, we apply it to the AMSU-B and MHS sounding radiometers globally using
CloudSat as a validation tool.

With only 5 channels, it is critical to carefully define x and S, so that they
accurately represent the range of variability in the surface and atmosphere. We
perform several experiments with different combinations of surface and
atmospheric parameters listed in Table 1.

A priorivalue () | Variance (s) |

Emissivity (1st Ocean: Wind Ocean: from AMSR-E  Ocean: 7.5 m/s

component) Land/Sea Ice: 1t emissivity PC  Land/Sea Ice: 0 Land/Sea Ice: 1 std. dev.
Emissivity (2nd Ocean: SST Ocean: from AMSR-E  Ocean: 3 K

component) Land/Sea Ice: 2" emissivity PC Land/Sea Ice: 0 Land/Sea Ice: 1 std. dev.
Water Vapor Mixing ratio at 14 standard ECMWF or AIRS AIRS: Product uncertainty
Profile pressure levels ECMWEF: 25%

Cloud Water ~ 1-km thick layer with base 1 0.01 kg/m? 0.1 kg/m?2

km above surface

Table 1: Parameters used in retrieval experiments, along with their initial (a priori) value and
variance.
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Figure 1: Percentage of 3-frequency (89, 150/157, and 183 GHz) emissivity variance explained
by the 1t EOF of the empirical model. Note that no angular dependence is assumed. Gray
indicates that <100 retrievals were available due to cloud cover or high water vapor content.

Validation

One year (2007) of co-located CloudSat and AMSU-B/MHS data (courtesy
Guosheng Liu of Florida State University) were processed with several versions
of the retrieval, each using a different set of retrieval variables or ancillary data
source (AIRS or ECMWF). For each AMSU-B/MHS pixel, the cost function (®)
was minimized and stored in a database along with three CloudSat reflectivity
metrics (maximum, surface, and mean) and ancillary surface classification
information (primarily from AMSR-E).

The binary detection of precipitation requires two thresholds: A minimum value
of ¢, and a minimum value of CloudSat reflectivity (Z), above which a pixel is
considered to be precipitating for retrieval and validation purposes respectively.
These thresholds can be optimized by maximizing the Heike Skill Score (HSS),
which is a measure of the ability of the detection scheme to classify pixels
correctly relative to random chance. HSS is defined as:

2(HC - FM)
(H+F)(F +C)+(H+M)M +C)

HSS =

Figure 2: This case is from an East Coast snow/ice storm on February 14, 2007. The top three
and bottom two panels on the left display the AMSU-B brightness temperatures, and the third
bottom panel from the left shows the cost function value when only the first PC of surface
emissivity (wind over ocean) is retrieved. High values correspond well to precipitation indicated
by radar (courtesy UCAR) on the right panel, particularly values greater than 25 dBZ (indicated
by green and yellow colors). Note the lack of artifacts related to coastlines or snow cover, which

is present over much of the Great Lakes region at this time.
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Figure 3: Left panels show HSS as a function of ¢ and Z for different surface types (columns)
and different reflectivity metrics/ancillary data sources (rows). Only the best combination of
parameters from Table 1 is shown (the parameters are indicated in the plot titles). To aid in
interpretation, a map of the dominant surface type and reflectivity histograms for each surface
type are shown on the right.

Conclusions/Future Work

Even with only 5 channels, AMSU-B/MHS are able to detect precipitation signal
over many surface types using an optimal estimation-based retrieval of non-
precipitating parameters.

Worst skill is over sea ice and ice sheets, Surface complexity, lack of water
vapor to mask the surface, or simply a lack of heavy precipitation events?
Choice of ancillary dataset makes a difference (try climatology for first guess?)
Over surfaces that work well, high correlation of mean/max reflectivity to ¢
indicates that this method can be used to quantitatively determine some
column-integrated quantity of precipitation as well as detection.

Best skill usually when retrieving two components of emissivity + water vapor.




