Spanish GPM Activities
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Medium-scale variability

In 2010, we used 16 Parsivel
disdrometers (in a dual setup
to ensure consistency) to
analyze the spatial variability
of the RDSD within a DPR-size
pixel.

The experiments were made in

15 - 20 Dec 2009
10 21 Dec 2009
5 -

¥1mn| - central Spain, which has a

semiarid climate with

PR S o] M B B L
22:30 23:00 23:30 00 00

O i M
00:30

IR TN N T T T
01:00 01:30

PR | "
02:00 02:30 03:00 03:30

15 - 3Jan 2010
4 Jan 2010

)
=
T

| ST T P O B B B

1400 16:00  18:00

| I N I A ] |

moderate rain rates, and thus
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Small-scale variability
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consist

In 2011, we located 16(+2) Parsivels to
analyze the consistency of the instruments,
the spatial variability of the RDSD at
decimeter scale, and to cross-compare the
new Parsivel? instruments.

The experiments were made in Toledo, and
included a sonic anemometer.

We found that the Parsivels provided

ent estimates of the RDSD for

moderate rainfall rates such as those found in
Toledo.

We also found that the old Parsivel estimates

can be
simple

corrected with the new model using a
transfer function that accounts for the

enhanced performances of the instrument.

Turbulence effects on the RDSD
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We investigated
the role of
turbulence on the
variability of the
RDSD.

Thus, we

compared
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The experiment showed that there is a relationship between the observed differences in
the RDSD, as measured by Parsivel disdrometers, and the turbulence.
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Disdrometer binning effect

Binning intervals
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The estimates of the size of the falling
drops is quantized into a discrete
number of intervals of different size,
or bins. The widths of the bins

are usually logarithm-like scaled to
account for the wide spectrum of
raindrop diameters, spanning three
orders of magnitude.

We compared several binning method
with an uniform, fine-scale binning
which simulated a perfect
disdrometer.

Using Monte-Carlo sampling and
several types of rainfall rates, we
calculated the effects on the DSD and
on the moments of different binning
strategies.

The results showed that non-negligible
differences appear in higher moments,
and that those are larger with light
rainfall rates.

Ensembles of NWP models
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We have compared multiphysics (MP) vs. perturbed
initial conditions (PIC) ensembles for a severe weather
episode in Spain. Among other results, we found that
the MP ensemble provided more spread than the PIC
ensemble. This is relevant for designing probabilistic
forecasts for early warning systems.
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Satellite Simulator for Spain
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Garcia-Ortega, E, Tapiador, F. J., Lopez, L., Katsanos, D., and Sanchez, J. L. 2011. A GPM simulator to improve
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High-res operational forecasts
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The University of
Ledn carries out
operational
forecasts with the
WRF model.

The UCLM has
carried out
retrospective 3 km
resolution

simulations at the
BSC and at the I3A.

WRF outputs are
used as input for
the satellite
simulator, and for
other applications
including hydrology
planning and early
warning of severe
weather.
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A major advantage of maxent is that it provides the least assumptive distribution given the
constraints of the problem. In other words, among the (infinite) parametric distributions that
may fit the empirical data, the maxent solution is the least biased given the information we
have. A maxent solution always exists, albeit analytical forms are only possible for a few cases

with less than four constraints.
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Ensembles of RCMs

Ensembles of Regional Climate Models
(RCM) are required to cope with the
limitations of model parameterizations
such convection, turbulence, or
surface processes.

ENSEMBLES

PRUDENCE

European projects such as PRUDENCE
and ENSEMBLES have provided

CRU

projections of precipitation for present
and future climates using several
RCMs.

"GPCC

The validation of present-climate
outputs also requires a multisource
approach to account for known
differences in the observational
databases.

CPC

Observational databases can also
assist to correct biases in models so
RCM outputs can be used to derive
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better and more complete
climatologies for a variety of
applications.

Tapiador, F.J., 2010. A Joint Estimate of the Precipitation Climate Signal in Europe using Eight Regional Models and Five

Observational Datasets. Journal of Climate, 23,7, 1719-1738.

Model validation
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Satellite-derived precipitation
databases are of primary
importance for validating the
projections made by Regional
Climate Models (RCMs).
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As longer and more precise series
become available, we will be able
to better understand model
uncertainties in present climate.

= Thus, we will increase our
confidence on our estimates of the
precipitation climate signal.

As previously with the European
ENSEMBLES and PRUDENCE

projects, recent comparison of
NARCCAP simulations with TRMM
data have shown the potential of
this research field for the PMM.
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Spatio-temporal structure of precip
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The temporal structure of
precipitation is as important as the
actual amount of rain for applications
such as agriculture or hydroelectricity.

Using spectral analysis, we have
investigated the expected changes in
the precipitation cycles in Europe
under the SRES-A2 climate change
scenario.

Validation of modeled precipitation
with observational data is critical to
ascertain the validity of the
projections. Tools for this task include
Probability Distribution Functions
(pdfs) for spatially-aggregated data,
and measures of spatial structure
such as the semivariogram.
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Renewable energy applications
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Precipitation estimates for hydroelectricity
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Hydroelectnc plants require prease and timely estimates of ram, snow and other hydrometeors for
operations. However, it & far from bemng a trivial task to meassure and predid precipitation. This paper
pnenﬂsﬂulmhpsbelm p’aapuamnmnulhy(hoehclncuy mdmcbmgmupmvnds

S Vi 8

The applicability of PMM products for
renewable energy operations is clear
in the case of hydropower.

GPM will provide improved estimates
of precipitation at temporal and
spatial resolutions suitable for
operations.
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