
Conclusion: We are gaining a)  a better understanding of DSD instrument/measurement  uncertainty which 

facilitates a more careful, application of specific instruments; b) identifying systematic DSD parametric  behavior; 

and c) using measurements to describe 3-D precipitation/DSD variability in a host of meteorological regimes.   
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2.  Instruments, Approach(es), and Methods 

 Establish multi-platform Disdrometer and Radar Observations of Precipitation (DROP) 

NETWORK for retrieving coupled Drop Size Distribution (DSD e.g., D0, Dm)  and rain rate 

space/time variability at dense to distributed scales. 

 Networked and redundant DSD and moment measurements,  inter-instrument error 

characterization, DSD in polarimetric radar modeling, empirical extension to column and 

larger horizontal domain.  

 

 

 

 

 

 

 

 

 

 

 

 Deployments Huntsville (2009—2011),  LPVEX  (2010), and MC3E (2011) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

1. GPM Algorithm and Science Needs 

• Multi-regime and cloud system PDFs of DSD (database)   

• Spatial/temporal Correlation (e.g., representativeness, beam filling error)  

• Vertical Structure and correlation properties  (e.g., Nw, D0,m, m, profiles) 
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B.  Column DSD character by storm type: Polarimetric Radar estimates  

DSD Profile variability and the occurrence 

of large-drops in flanks and core of a 

southeastern U.S. convective cell 

D0 

Nw 

Ze 

June 28, 2011 Heavy MCS convective and 

stratiform precipitation.  Note1-3 km level  

variability in Nw and D0 trends- in similar Ze. 
24 Hr sampling of DSD variability in TS Lee. 

Variability in Do and Nw with time, melting level 

intensity and shear- but in similar Ze. 

Shear Layer 

7500 min 2DVD N(D)    NLLSQ fit, truncated Gamma       N0,m,D0 in T-Matrix       Pol Variable DSD Fits (Dmax = 3*D0 assumed)  

• 12 collocated Parsivel-1 (PAR-1) disdrometers 

• Noise/systematic differences evident in RR and Dm . 

As in previous comparisons to JW and 2DVD, 

caution warranted for rain rates exceeding 10 mm/hr. 

• Nugget for this event was 0.96 (0.97 ) for Dm (RR); 

average absolute error of 13% (22%) for Dm (RR) 

(relative to mean).  Dm error worse in heavy rain 

 Instrument comparisons: Understanding characteristic behavior     

Polarimetric radar combined with 

disdrometer ―reference‖ and 

scattering simulations (profiler 

and MRR constraints): 

 

Allows a referenced extension of 

DSD retrievals to 3-D radar 

sampling domains 

• Recent ―upgrade‖ to PAR2 

Excellent agreement with gauges   

 

Better sensitivity to small drops (0. 2-0.6 mm) 

 

Relative to JW, better estimate of gamma 

shape parameters.    

 

Some mitigation of PAR-1 ―large-drop tail‖ 

  

No sensitivity of results to observed winds  

PAR-1 and 2DVD were very well correlated with 

PAR-1 exhibiting a positive bias of 30% (10-20%) 

in rain rate (Dm) 

PAR-1 performance vs 2DVD  in LPVEX light rain  

Parsivel disdrometers are a network ―workhorse‖:  Understanding their performance, to include a 

recent instrument upgrade, is necessary prior to using for quantitative DSD correlation work.  

 

Cold Season event (stratiform with embedded convection) 

• Rain rate decorrelates faster than D0 or Nw (as in previous studies) 

• Spatial decorrelation distance (R0) and fit parameter (F) for rain rate 

similar to previous studies (Moreau  et al., 2009, Gebrimichael and 

Krajewski, 2004)- R0 4-5 km and fit parameter (F) of 1.3-1.5 robust? 

A.  Correlation Length Studies: Cold Season strat/conv. vs. MC3E convective event 

4.  Combined radar, disdrometer, profiler approaches for retrieving 3-D DSD variability  

ARMOR  Radar 2-25-

09 (Huntsville)  

 
DSD, RR Space 

Time Variability  

MC3E:   ―Directional‖ gate-to-gate 

correlation properties along rays at 

two azimuths (270o, 280o) 

NPOL (MC3E) 4-24-11 

 

Cf. Thurai, Bringi, Carey, Gatlin, 

Schultz and Petersen, 2011, 

JHM submitted 

 

• Huntsville:  4-10 s sectors over 

2DVD (15 km from radar)  

• Time and space correlation 

along rays and in sector  

Disdro/Gauge  -  Radar/satellite error characterization- quantify regime point-to-area variance of rainfall rate and DSD 

 

MC3E:  Along ray correlation properties   

• Azimuthal/Directional variability   

• System regime dependence: More rapid 

decorrelation in convection relative to 

widespread Huntsville event 

 

3.  Ensemble DSD Behavior and Gamma Parametric Correlations 

Regime similarity in Measured Dmax vs. Dm 

―a‖ ~ 2.0 (similar to previous 

studies); increases as f(RR) 

Uncertainty in ―a‖ due to large 

drop sampling 

Regime similarity 

Measured Dmax = a*Dm 

Examine:  

5000 1-min. samples- MC3E 

2DVDs (shaded) 

7500 1-min. samples N. AL 2DVDs 

(contour) 

Looking for m constrained by Dm, sm……. 

Similar relationships Huntsville, MC3E, Darwin, 

Finland, MC3E…… 

(sm/Dm)2 = 1/(4+m) 

 

Can we define a consistent m – Dm relationship? 

Cf. Christopher Williams DSD WG Poster 

E.g., MC3E case (4/24/2011) 


