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1. Background

• The PMM Passive Microwave Algorithm Working
Group has settled on a Bayesian framework for
retrieval of global precipitation from the GPM Mi-
crowave Imager (GMI).

•Method entails querying a globally representa-
tive data base of matched GMI observations and
independently-determined rain rates and structures
provided by the Dual-frequency Precipitation Radar.

• Prototype is under development at CSU using data
from TRMM Microwave Imager (TMI) and Precipita-
tion Radar (PR).

• In its current form for TMI, algorithm attempts to
finds matches to all 9 channels simultaneously, al-
beit with varying channel weights.

2. Issues

•Data base entries are “raw” TBs and thus encom-
pass variability due to a variety of sources in addi-
tion to precipitation.

•High-dimensional search space is difficult to popu-
late with a sufficiently dense, diverse and statisti-
cally representative set of observations.

• Large tolerances must sometimes be allowed to en-
sure a reasonable number of matches.

• For many pixels, retrieval will be determined by a
very small number of loosely matching data base
entries.

Fundamentally, reliance on a high-dimensional solu-
tion data base implies

•Need for a very large data base

• Long search times

•Non-robust statistics for rarer combinations of chan-
nel TBs

•Need to account for highly correlated geophysical
noise between channels

Above problems are greatly exacerbated over land

•Heterogeneous background types

• Poorer signal-to-noise ratio

•Much smaller training sample for given surface clas-
sification

3. Objective

Demonstrate that the dimensionality of Bayesian re-
trieval poblem can be radically reduced (from 9 to only
2 or 3) without impairing retrieval performance.

Although ultimate goal is to adapt these methods to
over-land retrievals, the benefits are illustrated here in
the context of over-ocean retrievals.

Why?

•Clearest demonstration with fewest complicating
variables.

• Ability to evaluate results in context of past perfor-
mance by other established over-water algorithms
(e.g., GPROF).

• Signal-to-noise ratios and the precipitation informa-
tion content of all TMI channels presumed to be
superior over open water. Therefore, the conse-
quences of inadvertently throwing away “good” in-
formation should be more readily detectable.

Benefits:

• Large contributing sample size (102 – 106) for most
retrievals despite moderately tight tolerances.

• Explicit allowance for background noise budget in
setting tolerance.

• In addition to a single rain rate estimate for each
pixel, robust PDFs (e.g., percent likelihood of R >
R0).

•Graceful handling of rare non-matches.

• Insight into “true” useful information content of pas-
sive microwave channels with respect to retrievable
rain cloud properties.

•Data base reduces to small (1.5 MB!) pre-computed
lookup table

•With extremely little R&D (to date), comparable
global performance to current GPROF.

4. Data

•Matched TMI brightness temperatures and PR
(2A25) surface rain rates

• (De-)convolved to 19 GHz channel resolution

•One calendar year (2002) global data

• ERA-Interim analysis 6-hourly SST

5. Procedures

Stage 1:

• Transform raw TBs: x = log(TS −TB)

•Compute global mean 〈x〉 and covariance Sx for all
non-precipitating scenes.
•Compute eigenvectors Ex, eigenvalues Λx of Sx

•Define transformed channels yi = [(x− 〈x〉)TEx]i/λ
1/2
x,i

• By design, 〈y〉 = 0 and Sy = I outside of precipita-
tion

Summary: The 9 transformed channels y retain all
information found in the original TB, BUT they have
been completely decoupled AND have they have
an uncorrelated total noise variance (instrument plus
geophysical) of unity outside of precipitation.

Stage 2:

•We now apply the same transformation to precipitat-
ing scenes with R > 1 mm/hr. The variance in each
transformed channel yi is now considerable larger
than unity. The added variance is due solely to the
influence of precipitation.
• For these raining pixels, we compute Sy,r ≡ 〈yyT〉,

with eigenvectors Ey,r and eigenvalues Λy,r.
•We define the precipitation pseudochannels z ≡

yTEy,r .
•Outside of precipitation, these 9 pseudochannels

still have zero mean and unit uncorrelated variance.

For precipitating scenes, only the first three (z1, z2, z3)
have variance σ2

z,i significantly greater than unity. We
therefore conclude that these contain virtually all ex-
tractable information concerning the properties of the
precipitation in the the scene.

Stage 3:

• Apply transformation TB → z for all ocean scenes
(N = 1.25× 108).
•Odd scenes used for retrieval database ; even

scenes for validation.
• Aggregate database into 4-D array.
•Retrieval consists solely of indexing into array

with three pseudochannels zi (∆z ≈ 1) and SST
(∆SST= 5 K).
•No other ancillary data required.

6. Results
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Figure 1: Validation of TMI retrievals against inde-
pendent 2A25 (PR) rain rates over one calendar year
(2002). Top: Pixel-by-pixel comparison. Bottom: Grid-
ded annual totals at 1◦ resolution.
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Figure 2: Maps of annual total precipitation from PR
(top) and TMI (middle). Also shown is the ratio (bot-
tom). PR data used in this comparison were from the
independent data set.
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Figure 3: Zonally averaged PR and TMI annual total
ocean precipitation for 2002.
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Figure 4: Because of the typically very high density of
samples in the low-dimensional database, it is possi-
ble to extract not only a mean (or expected) rain rate
for a scene but also robust statistics concerning prob-
ability of precipitation exceeding a given intensity.
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