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Goals 
 

•  Develop an ensemble based data assimilation system for assimilation and 
downscaling of precipitation information from the GPM-like observations 
(e.g., TMI, AMSR-E, MHS, AMSU-B radiances) 

 
•  Focus on high-frequency channels (e.g., clouds) 

•  Incorporate the following state-of-the art components:  
²  Weather Research and Forecasting (WRF) model with NASA cloud-microphysical 
scheme 
²  NCEP GSI forward observation operators for conventional and cloud cleared 
satellite observations NASA SDSU forward operator for precipitation sensitive 
satellite radiances 
²  CSU Maximum Likelihood Ensemble Filter (MLEF) data assimilation method as a 
framework for addressing non-linear and discontinuous data assimilation problems 
(Zupanski et al. 2008) 
²  Goddard Satellite Data Simulator Unit (SDSU) as radiative transfer models in 
radiance observation operator 
 

•  Assimilate conventional and satellite observations to produce accurate 
high-resolution precipitation analyses and short term forecasts, with 
uncertainties assigned to them 

•  Use this system as a prototype for producing the Level-4 regional high-
resolution precipitation analyses and short term forecasts 

•  Explore applications of the precipitation analyses and forecasts for 
improving hydrological forecasts  

Data Assimilation Method 
Maximum Likelihood Ensemble Filter (MLEF) 

(Zupanski 2005;  Zupanski and Zupanski 2006; Zupanski et al. 2008) 
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- Control vector in ensemble space of dim Nens ζ
- Model state vector of dim Nstate >>Nens 

C = ZTZ

z i = R−1 2H[M (x + pf
i )]− R−1 2H[M (x)]

- C is information matrix in ensemble subspace (of dim Nens × Nens) 
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- Dynamical forecast model 

- Observation operator 

- zi  are columns of Z 

-  pi
f    and  pi

a   are columns of Pf  (forecast error cov) 
and   Pa (analysis error cov)  

yobs - Observations vector of dim Nobs 

- Control variable  transformation (preconditioning) 

xn = Mn,n−1(xn−1)

yn = Hn (xn )

Conclusions 
q  Data assimilation system has been successfully tested in several intensive 
precipitation events 
q  The system is capable of assimilating precipitation sensitive GPM-like 
radiances 
q  The system produces dynamically balanced (in balance with wind and other 
dynamical variables) precipitation analysis.  
 

Future Work 
q  Include assimilation of AMSU-B high frequency channels 
q  Develop radiance observation operator for GPM instruments with realistic 
scan configurations  
q  Develop capability of precipitation radar observations 
q  Produce Level 4 GPM precipitation analysis at cloud-resolving scales 
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System Design 

Case Study 
 

²  Hurricane Irene was formed over the Atlantic on August 20, 2011. While it reached Category 
3, with winds over 115 mph on August 24, it was a Category 1 hurricane with winds over 85 
mph at landfall on August 27. Although not a very strong hurricane at landfall, it covered a wide 
area causing an extensive damage due to excessive rainfall and flooding 
 

²  Assimilation of high-frequency MHS radiances (level 1b) at 89,157,183 GHz over land and 
ocean 
 

²  Assimilation of high-frequency AMSR-E radiances (level 1b) at 10.7, 18.7, 23.8, 36.5 GHz 
(H,V) over ocean and 89GHz (H,V) over land  
 

²  Assimilation of NOAA operational observations  
 

²  Data assimilation interval is 3 hours (18UTC 26 AUG2011 -  03UTC 29 AUG2011) 
 

²  Ensemble size is 32 members  
 

²  Non-hydrostatic WRF model with nests (9 km and 3 km) 
 

²  Control variable includes: u, v, t’, ph’, q, qcloud, qrain, qsnow, qice, qgraupel 

Figure 1. Hurricane Irene: 
Surface weather map at 
landfall on 12UTC 27 AUG 
2011, near Cape Lookout, 
North Carolina. The 
hurricane strength was 
Category 1, with winds at 
85 mph. 

FLOW CHART 

Observation operator  
(NCEP GSI + NASA SDSU forward operators) 

Ensemble + Control 

MINIMIZATION 

CONTROL VARIABLE UPDATE 

xf ; Pf 

xa; Pa 

xf ; Pf 

BC from Global Analysis 
WRF forecast model 
Ensemble + Control 

WRF forecast model 
Ensemble + Control 

BC from Global Analysis 

NCEP Conventional 
and Cloud Cleared 
Satellite Radiances 

NASA GPM-like 
Satellite Radiances 

(TMI, AMSR-E)  

Dynamical 
Precipitation 

Analysis + Analysis 
Uncertainty 

Next Data Assimilation Cycle


Dynamical 
Precipitation 

Forecast + Forecast 
Uncertainty 

Figure 2. Distribution of radiance departure (MHS). Although departures 
group near zero, thus no bias, there is a noticeable skewness in the 
histograms.  This illustrates a challenge the bias correction algorithm must 
resolve. It is also interesting to note the differences for 89 GHz over ocean 
and over land, another illustration of the complexity of radiance bias 
correction problem.    
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Figure 4. Background error standard 
deviations for cloud rain, cloud snow, 
wind and potential temperature, valid 
06UTC 27 AUG 2011. Note local 
character of uncertainty associated with 
cloud variables, and wide spread 
uncertainty of dynamical variables. 
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Figure 5. 48-hour accumulated surface rainfall (mm) from 00UTC 27 AUG 2011 to 
00UTC 29 AUG 2011: Observed (ST4), no assimilation (CNTRL), and with 
assimilation (DAS).  One can note the improved estimates from DAS, in particular in 
the areas with the maximum precipitation amounts.  
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Figure 3. Surface precipitation (mm) accumulated 
between 09UTC to 12UTC 27 AUG 2011, from 
forecasts issued at 06UTC 27 AUG 2011 after the 
first assimilation of MHS radiances, valid 12UTC 
27 AUG 2011.  Left column: horizontal map, Right 
column: vertical cross-section. Assimilation of MHS 
radiances has positive impact on both the the 
spatial coverage and intensity of precipitation. 
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