TRMM Tropical Rainfall Measuring Mission

~14 years of data

NASA Project Scientist:
Dr. Scott Braun
NASA Program Scientist:
Dr. Ramesh Kakar

TRMM Achievements

- Space standard for measuring precipitation
- Improved climatologies
- Multi-satellite (~3-hr) rainfall analyses
- Hurricane/typhoons
- Vertical hydrometeor/heating structure
- Diurnal signal
- Flood/drought and agricultural applications

Rainfall Anomalies for Aug 7 to Sept 7, 2011

Hurricane Rina (October 26, 2011)

Spacecraft and instrument status:

- All spacecraft systems in excellent shape for continuation
- Precipitation Radar (PR) experienced anomaly in 2009, but since then has worked fine
- TRMM Microwave Imager (TMI)—has equaled/ surpassed the SSM/I heritage of 10+ yr median lifetime;
- Visible and IR Scanner (VIRS)—very minor response degradation;
- Lightning Imaging Sensor (LIS)—no moving parts, no component limiting life

TRMM

High ratings t

Mission	Merit
Aqua	5.0
Aura	5.0
CALIPSO	4.1
CloudSat	5.0
EO-1	4.0
GRACE	5.0
Jason-1	5.0
OSTM	5.0
QuikSCAT	5.0
SORCE	5.0
Terra	5.0
TRMM	5.0

^{*}Additional commentary or condit

- Weaknesses: Single satellite only, only samples the tropics, trouble with light rain
- Approved for baseline operations for 2012-13
- TRMM E/PO plan submitted Oct. 31

V7 Reprocessing Completed

- Reprocessing of 13+ years of TRMM data completed
 AUG 17
 - Does not include latent heating and multi-satellite products

V7 Real-time Processing

- V7 near real-time data became available in early OCT.
- V7 to become the official version on DEC 1
- V6 will continue for 6 months beyond DEC 1

Latent Heating and Multi-Satellite Products

- CSH code delivered to PPS in OCT, PPS currently testing
- SLH code to be delivered to PPS by NOV
- Multi-satellite code to be delivered by end of year
 - Products to be released on 2-month delay instead of current 2-week delay
 - AMSR-E no longer available, now using NOAA
 MHS instead
 - SSMIS satellites likely to be included in new version

TRMM

TRMM GV-Walnut Gulch (E. Amitai)

Time (minute relative to overpass time) To the Notice of 8

TRMM Comparison of TMI vs. PR Rain Rate PDFs

From Wes Berg, CSU

Regional TMI - PR Differences

From Wes Berg, CSU

TRMM

Rainfall retrieval improvements in V7

From Chuntao Liu, Univ. of Utah

PR V7 vs. Rain Gauge climatology

Rainfa]

PR vs. TMI

- 14 year climatology of rain rate estimates, gridded reflectivity, and convective/ stratiform classification using data from Kwajalein, Melbourne, and Houston.
- Developed a physically-based, modular QC algorithm based on dual-pol properties of precipitation. Extendable to any dual-pol radar.
 - Relevant for WSR radars with DP capability, and D3R and NPOL.
 - KMLB is scheduled to be upgraded to DP in Jan 2012.
- Adapted and applied a self-consistency calibration technique for absolute reflectivity calibration. Currently being applied to KPOL and NPOL data. Adapted and applied techniques for DP-based rain rate and DSD retrievals.
- Products from 21 WSR-88D sites in the southeast CONUS and 12 sites in midwest CONUS in support of the GPM GV program.
- GV staff have participated in the planning and execution of several GPM GV field campaigns, including LPVEx, MC3E and GCPEx.
- Comprehensive support for the Wallops Precipitation Research Facility, including data QC, analysis, precipitation estimation, and DSD retrievals.

TRMM**7** vs. V6

Rain fall contribution from precipitation systems with different height

2A23 V7 Rain Types

- New V7 concepts = small rain cells, "randomly" appearing shallow non-isolated pixels, and high storm height
- V7 generally shifted pixels from stratiform to convective (esp. 152 to 292)
- V7 20°N-20°S stratiform rain fraction near 35% (cf. 40% in V5)

V5 stratiform rain fraction based on Schumacher and Houze (2003)

V7 stratiform rain fraction for Jun 99-May 00 and 2008

