DPR algorithm status

- Current Status of the Dual-frequency Precipitation Radar (DPR) Algorithm Development -

> Toshio Iguchi (NICT) PMM meeting, Denver 7 November 2011

DPR L2 Development activities

- Domestic DPR L2 meetings were held 10 times since the last PMM meeting.
 - Dec. 9, 2010 (PI workshop), Jan. 14, March 2, April 14 (with GV team), May 17, June 13, July 15 (Telecon with US team), Aug. 22, Sept. 15, Nov. 1, 2011.
- Interface variables defined.

I Institute of

- Skeleton code submitted in April.
- "Baseline code" developed (ready to submit).
 - 6 basic sub-modules were developed and submitted
 - EORC/RESTEC compiled all (but SRT) modules successfully.
 - SRT module was combined to the other modules last week in the US.
 - Scattering tables created by Liao will be combined in the DSD module.
 - Simulation data (ver. 1) with HDF/DPRL1B format was created.
 - Overall flow of data were tested with the simulation data.
 - "Baseline code" will be submitted by the end of November 2011.
- "At-launch code" will be developed by next autumn.

People involved

- L 2 DPR algorithm consists basically of 8 modules .
 - Main module: Seto, iguchi
 - controls the overall flow of data processing among the other 7 modules.
 - Preparation module: Yoshida, Kubota
 - Vertical module: Kubota, Awaka
 - Classification module: Awaka, (Chandra, Le)
 - SRT module: Meneghini, Seto, (Liao, Tanelli, Durden)
 - DSD module: Kozu, Meneghini, Seto, (Liao)
 - Solver module: Seto, Meneghini
 - Texture module: Seto

DPR Standard Algorithm

- Level-1: Radar echo power and measurement conditions/ parameters are derived for each pixel
 - KuPR algorithm
 - KaPR algorithm
- Level-2: precipitation rates and precipitation-related variables (DSD, bright band, type, phase...) are retrieved for each pixel
 - KuPR algorithm (\leftarrow KuPR L1)
 - KaPR algorithm (← KaPR L1)
 - − Dual-frequency algorithm (← KuPR L1 and KaPR L1)
- Level-3: daily and monthly statistics of major outputs of L2

New ideas with Dual-frequency techniques

- SRT (Surface Reference Technique)
 - PIA can be more accurately estimated from the difference between σ⁰ at the two frequencies than from each frequency → Meneghini, Tanelli, Durden
- Precipitation type classification
 - The dual-frequency ratio (DFR) of Z_m is useful to detect a melting layer \rightarrow e.g. Le and Chandra
- DSD Retrieval
 - Many previous studies exist to retrieve two DSD parameters from dual-frequency Z_m 's
 - A new retrieval method consistent with the TRMM/PR algorithm is developed.

Dual-Frequency SRT

R. Meneghini, L. Liao, S. Tanelli, S. L. Durden

• δPIA is more robust to surface variations

$$PIA = A(f) = \sigma_{NR}^{0}(f) - \sigma_{R}^{0}(f); f = Ku \text{ or } Ka$$
$$\delta PIA = \delta A = [\sigma_{NR}^{0}(Ka) - \sigma_{R}^{0}(Ka)] - [\sigma_{NR}^{0}(Ku) - \sigma_{R}^{0}(Ku)]$$

Incidence angle = 8.7 deg

Profile classification method (CSU: Le and Chandra)

- Hydrometeor identification model (*HIM*) is the second model of the profile classification method.
- As discussed before, DFRm is useful parameter to detect the hydrometer phase transition.

The main parameter used in *HIM* is *DFRm* and its range variability.

---- Melting layer top is the height at which *DFRm* gradient has maximum value.

DFR (Dual-frequency ratio) for DSD

DFR is the ratio of Z_e or the difference of Z_e in decibels DFR=dB Z_e (Ka)-dB Z_e (Ku) (dB Z_e indicates Z_e in decibles)

Assume DSD of 0 degree C rainfall follows a Gamma distribution with μ =3 and parameterized with D_0 and N_0 . DFR is not dependent on N_0 , and the relation between DFR and D_0 is given as shown left.

When DFR is positive, D_0 has multiple solutions.

 D_0 is constrained to be larger than D_{0s} , where DFR takes the maximum.

Equivalence of N_0 - D_0 parameterization and k- Z_e -epsilon approach

• We assume that the PSD can be represented by two parameters.

$$- k(N_{0'} D_{0}) = f(Z_{e}(N_{0'} D_{0})) \rightarrow N_{0} = g(D_{0})$$

•

(N0)

$$k = f_1(Z_e) \text{ or } N_0 = g_1(D_0)$$

$$k = f_2(Z_e) \text{ or } N_0 = g_2(D_0)$$

$$k = f_3(Z_e) \text{ or } N_0 = g_3(D_0)$$

Adding a parameter epsilon (ε) to the k-Z_e relation increases one degree of freedom to the N₀-D₀ relation. (degree of freedom is 2.)

$$- k(N_0, D_0) = f(Z_e(N_0, D_0), \varepsilon) \rightarrow N_0 = g(D_0, \varepsilon)$$

– All realistic combination of (N_o, D_o) can be realized by Z_e and ε

The TRMM/PR standard algorithm (HB-SRT hybrid method)

Histchfeld-Bordan (HB) method corrects attenation with k- Z_e relations as

 $k = \alpha Z_{e}^{\beta}$

where

 $\alpha(r) = \varepsilon \alpha_0(r)$

 $\boldsymbol{\varepsilon}$ is adjusted to maximize the likelihood;

 $f(\varepsilon)g(\text{PIA}_{\text{SRT}}; \text{PIA}(\varepsilon))$

Baseline code for KuPR or KaPR algorithms (HB method)

Baseline code for Dual-frequency algorithm (HB-DFR method)

Baseline code for Dual-frequency algorithm (HB-DFR method)

Once DSD is estimated by DFR, *k* and Z_e are given as functions of N_0 and D_0 .

For each range bin and frequency, ε is recalculated to satisfy $k = \varepsilon \alpha_0 Z_e^{\beta}$. Iterations between HB and DFR may improve ε and DSD.

National Institute of Information and Communications Technology

Testing of HB-DFR method

The simulation DPR dataset: DSD estimates by the TRMM/PR standard algorithm. No measurement error, noise, clutter effects One month (for July 2001) # of iterations 100 (maximum)

Precipitation rate estimates at the lowest range bin (the closest to surface) are evaluated.

Light (0.1 - 1 mm/h)Slight underestimation Due to DFR $(D_0 > D_{0s})$ Moderate (1 - 10 mm/h)Satisfactory Heavy (10 - 100 mm/h)Severe underestimation Due to multiple solutions (Seto and Iguchi 2011, IEEE TGRS pp. 1827-1838)

n and Communications Technology

Synthetic simulation data

- JAXA is creating 3 kinds of synthetic L1B data in DPR format.
 - Synthetic data with simple assumptions
 - 1. Purely simple synthetic data (DPR format available)
 - Synthetic data under complicated assumption
 - 2. Empirical-based synthetic data (from TRMM/PR)
 - 3. Numerical simulation-based synthetic data
 - (2 & 3: Now in binary-format, but DPR format available soon)
- US team members are also making synthetic data
 - Airborne data based (JPL, GSFC)
 - TRMM/PR (CSU)
 - Numerical model (GSFC)
 - etc.
- to be shared with other teams

Example: Received Power of KaPR

Kubota et al. (2011, Proc. IGARSS) An example at vertical cross sections

Effective Z-factor of KaPR

Attenuated effective Z-factor of KaPR

Kubota et al. (2010, Proc. IGARSS) Examples of the GPM/DPR synthetic data

ISOSIM-Radar

Sensor-related Parameters: Height: 399.2km Scan angle: -8.5 to 8.5 deg 25 angle bins (antenna beam directions) Antenna gain: 47.4dBi Sidelobe Level: -45dB Pulse width : 500m Antenna pattern : Gaussian Sea Surface (spherical)

Scan position of 'Scan No. 3722'

Received power of Ku_match at Scan No. 3722 Received power of Ka_match at Scan No. 3722

Ka_match: Received Power at 35.55GHz (Scan No. 3722) 12 (dBm) 10 -88 Altitude (km) 8 -92 -96 6 -100 -104 -108 2 -112 0 -5 n 5 Scan angle (deg)

DPR Algorithm Schedule for 2011

	Alg. Item	Up to 2010	Jan Feb Mar A	pr	May Jun	Jul Au	ig Sep Oct	No	V L	Dec	
Development Activities	Common	ATBD and A Table of variables	Framework of DPR-L2 Code (as Skelton Code)		Testing of Skelton Code		Integration of sub modules into baseline code				-
	Preparation Module	Investigation of DPR-L1 data structure	Rain and clutter detection		Conversion to radar reflectivity factor		Conversion to surface backscattering cross section			elive	
	Vertical Profile Module	Investigation of GANAL data	Coordinate Conversion	ntegra	Variable	ble Conversion for non-precipitation particles		ction tion	Test	r Bas	
	Classification Module	Investigation of TRMM/PR methods	Phase judgment method	ation i	Precipitation a bright bar	type judgment Ind Ind detection	A dual-frequency p judgment meth	ohase od	ting of	eline	
	SRT Module	Investigation of TRMM/PR methods	A dual-frequency SRT method	nto Sk	Weak Rain me	n Reference ethod	Preparation o preliminary datab based on TRMM products	f base I/PR	Base	Code t	
	DSD Module	Preliminary Analysis	Look-up tables for liquid rainfall	elton	Investigation solid and n	on of DSD in nelting layers	Look-up tables for and melting lay	solid ers	ine C	o JAX	
	Solver Module	Improvement of IBRM methods	Testing of IBRM methods	Code	Investigatic use of SF mo	on of effective RT in solver odule	Testing of methods SRT	s with	ode	(A and	
	Misc.				Investigation of NUBF issues				d PP		
	Simulation Dataset	Simple simulation data based on TRMM/PR products			L1B-format simulation data with simple assumptions		ptions		05		

nformation and Communications Technology

(Yellow boxes not implemented yet.)

National Institute of Information and Communications Technology

Summary and future activities

- DPR algorithm development nearly in accordance with the original schedule.
- Implementation of proposed and advanced functions
 - DFR SRT, wet surface SRT, DFR classification
 - Creation of scientifically reliable models and tables:
 - scattering tables, BB model, ice particle models, etc
 - Iteration in the main module
 - Outer swath, Ku-PR, Ka-PR algorithms
- Review of internal and external variables and format
 - Interface with other teams
- Uncertainty and error analysis
 - tests with synthetic data
- Evaluation of NUBF effect and development of compensation algorithm
- Revision of the ATBD

Outline

- DPR algorithm
 - structure and modules
- Original schedule
- What we have done
- Changes
 - Solver,
- New implementation
 - Classification, SRT
- Simulation data
- Future activities
 - Error analysis, NUBF effect, L3 products, etc.
- Schedule

Radar Algorithm milestones in 2011

- October 2010: Define the input and output variables from each module
- March 2011: Submit a test version of modules
 - Scientific validity is not questioned in this version
 - Checking the overall flow of data is the main concern.
- March 2011: Synthetic data set for testing the algorithm.
- March 2011: Start testing each module and combined data flow with the synthetic test data.
- May 2011: Verify and summarize the performance of the test version.
 - summarize the issues and list the items to be improved or modified.
- October 2011: Submit code that satisfies the minimum functions described in the ATBD.
- November 2011: Submit the initial test version to PPS and EORC.
 - Comparison tests with GMI and combined algorithms.
 - Improve the algorithm
- November 2012: Submit the at-launch algorithm

