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Brief Outline

Using 13 years of TRMM data for improved “regional
climatologies” of precipitation features: Southeast Asia,
North American monsoons, Argentina - poster highlights

TRMM V6 vs. V7 comparison — poster highlights

TRMM 3B43 rainfall over tropical ocean ITCZ and
comparison with 4 reanalysis datasets — poster highlights

Contributions to MC3E field program
What % of LIS lightning is in stratiform regions and anvils?
Lightning vs. convective storm structure from PR and TMI



Southeast Asia: MCSs in Mei-yu fronts (Weixin Xu)
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Over North America: Comparison between AZ/NM and NAME
regions for July-August precipitation (Christy Wall)
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AZNM and NAME regions have similar diurnal patterns of convection, but
AZNM is more likely to have deep convective features remaining over high
terrain later in the day. NAME produces slightly larger features.

Wall et al., J. Hydrometeor. 2011



MCSs over Southeast South America (SESA)
( Luciano Vidal and Paola Salio)
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Where are these MCSs initiated?
Details- see poster this afternoon

Why the secondary maximum
in initiation time after sunset?

Tracking MCSs using half hour infrared images
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TRMM rainfall retrieval V6 vs. V7 comparison (Chuntao Liu)
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What are the differences in deep and shallow systems? Details: see poster this afternoon.



TRMM rain characteristics and large-scale vertical motions in 4
reanalysis datasets over tropical oceans (Chie Yokoyama)

Reanalyses: NCEP, ERA-Interim, JRA25/JCDAS, and MERRA
Six tropical oceans: WPAC, CPAC, EPAC, ATL, WIO, and EIO
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Q. How does rainfall relate to w on a monthly time scale?
Mean spatial correlations between 3B43 rainfall and w for 1998-2010

WPAC
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w300

w850

ERA
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MERRA
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ERA
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MERRA

-0.61

-0.82

-0.88

-0.40

* Higher correlations tend to be found at 850 hPa over EPAC, but at 300 hPa over WPAC.
* Correlations are lower over WPAC than over EPAC.




Correlation

Seasonal changes in correlations between rainfall and w
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Over WPAC, higher correlations are found in Over EPAC, lower correlations are
Mar-Apr when weak ITCZ banding occurs. found in light-rain season.

We wish to understand the major differences between reanalyses:
NCEP often has low correlation;, ERA-interim often has highest. Why?
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Q. How are correlations determined?
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* EPAC: Correlations are
high; tend to be lower
with smaller rainfall
amounts (reasonable).

* WPAC: Correlations are
not as high, and they are
nearly independent of

rainfall amounts for all
datasets. Why?



Q. What are differences among reanalysis datasets, and why?
Rainfall: 6mm/d

EPAC case In MarCh 2010 Large tall sys’.cem rain: 68%
MERRA corr300= +0.49 (') ERA corr300=-0.93 (hlgh)

-128 -120 -112 -104 -128 -120 -112 -104

Contour: w at 300hPa, Shade: 3B43 rainfall

* MERRA often has subsidence at 300 hPa over the ITCZ, while all others have ascent...
so big question is “is it possible that MERRA w’s at 300 hPa are correct?”

* MERRA always has high correlations at 850 hPa regardless of correlations at 300 hPa.
* We need to know relationships between rainfall and w on rainy days.

Details: See Chie Yokoyama at the poster this afternoon
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MC3E — Assisting with Mission Science and Student Forecasters

Google Earth ("RTMM")
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(Arrival of ER-2 just as Line of Intense Storms Forms)
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IT’S TIMBTO FILL IN

USING M{3E DATA

FROM FRPDM NASA,
DOE RADARS, ER-2!
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FiGg. 7. Average vertical velocity in the strongest 109% of updraft
cores over tropical oceans [triangles, EMEX, Lucas and Zipser
(1994); circles, GATE, Zipser and LeMone ( 1980); diamonds, hur-
ricanes, Jorgensen ct al. (1985 ); squares, TAMEX, Jorgensen and

Thunderstormm Project,
adapted from Zipser and L.eMone ( 19830)]). The lines show terminal
fall speeds of raindrops as a function of height, adapted from Gunn
and Kinzer (1949 ) and Foote and DuToit ( 1969) . after L.ucas and

Zipser ( 1994). Zipser and Lutz, MWR 1994

LEeMone (1989)] and over land [crosses.



MC3E — Assisting with Mission Science and Student Forecasters
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Statistics of lightning flashes over anvil and stratiform regions (Michael Peterson)

Global Land Only Ocean Only
Count % Count % Count %
All 5934492 4840322 1094205
Anvil 324052 5.46 266894 5.51 57160 5.22
Stratiform 334660 5.64 251818 5.20 82844 7.57
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Peterson and Liu, JGR, 2011



Relationship between flash rate and the 37 and 85 GHz PCT
(Chuntao Liu, Dan Cecil and Ed Zipser —JGR 2011)

The best correlations:
Flashrate oo Area g; g, per < 150 Flashrate o= Area g; g, per < 250k

Thunderstorm screening: Land: PCTggg,, < 217K PCT;.¢,,< 280K  Ocean: PCTgggyy, < 212K PCT; ¢, < 258 K

Observation of flashes

“Prediction” using
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Relationships between flash rate and radar reflectivity profile
(Chuntao Liu, Dan Cecil and Ed Zipser; submitted to JGR)
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Correlation between radar reflectivity vs. flash rate in precipitation features
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The best correlations are found from flash rate to the area

or volume of 30-40 dBZ echo in the mixed phase region.
Supports previous findings by Petersen, Rutledge, Carey, Deierling.

Height, temperature of 20 dBZ top is nearly irrelevant!



There are large regional variations in the relationship between
flash rate and the volume of 30-40 dBZ in the mixed phase region

(a) Slope A of (flash rate) = A* (area of 35dBZ at -10°C) + B #/minute/km®
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Can we “predict” flash rate using radar reflectivity

e Using a simple thunderstorm screening:

Land: T30dzt0p < ~14°C & T 40dzt0p < 8°C Ocean: T3pgpztop < -20°C & T40dz10p < 4°C
And simple land, ocean and coastal relationships between flash rate and the area of 35 dBZ at -10°C.
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Understanding regional differences in
thunderstorms by comparing the
strongest 10% and weakest 10% over

selected ocean and land regions

For strong storms, land radar profiles
are stronger than ocean profiles,
EXCEPT in the Amazon, which is close to

the ocean profiles (Green Ocean?)

What are the properties of the weakest storms
that can have lightning? For all land and ocean

Location of samples of RPFs with flashes

<
regions, answer seems to be: 30 dBZ area at -15°C

Temperature (°C)

Central Africa: 47933
Amazon: 23120

JJA SE US: 6190
JJA SW US: 9399
Argentina: 12317

Indian and Pakistan: 21997
Tropical Atlantic: 2002
Indian Ocean: 2540
Tropical Pacific: 2837
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TAKE-HOME MESSAGES

With each additional year, the TRMM database
becomes ever-more valuable for studies of rainfall
climatologies, diurnal cycles, convective properties...

MC3E field phase was highly successful and the data set
deserves to be exploited (NASA+DOE collaboration)

It is important to understand the differences between
global reanalyses and their relation with rainfall

Relationships between radar, passive microwave, and
lightning data are converging thanks to TRMM/LIS;
should help in diagnosing severe weather in GPM era






A good heavy rainfall case: High correlation at both 850 & 300 hPa

EPAC case in August 2009 | FRaimal: 5.6mm/c

Large tall system rain: 73%

MERRA corr300=-0.75 (high) ERA corr300=-0.92 (high)

¢l 9l
¢l 9l

12 16
12 16

8
8
8
8

4

-128 -120 -112 -104 -96 -128 -120 -112 -104 -96
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WPAC cases with heavy rainfall

July 2003 August 2002
ERA corr300=-0.43 (low) ERA corr300=-0.86 (high)
128 136 144 152 160 128 136 144 152 160

o
136 144 152
I I I I O I

0 4 8 12 16 20 0 4 8 12 16 20
| Contour: w at 300hPa, Shade: 3B43 rainfall |

*WPAC warm pool doesn’t have forcing from geographically-fixed SST gradients as in EPAC,
with almost daily shallow convergence giving high correlations between 850 hPa w and 3B43.
eOver warm pool, heavy rainfall may occur over a wider area different on any given day, which
may result in low correlations between monthly rain and monthly w.

*Even over WPAC, correlations tend to be higher when rainfall is concentrated along a band.




