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• The PMM Passive Microwave Algorithm Working Group
has settled on a Bayesian framework for retrieval of global
precipitation from the GPM Microwave Imager (GMI).

• Method entails querying a globally representative data
base of matched GMI observations and
independently-determined rain rates and structures
provided by the Dual-frequency Precipitation Radar.

• Prototype is under development at CSU using data from
TRMM Microwave Imager (TMI) and Precipitation Radar
(PR).

• In its current form for TMI, algorithm attempts to finds
matches to all 9 channels simultaneously, albeit with
varying channel weights.



Issues I

• Data base entries are “raw” TBs and thus encompass
variability due to a variety of sources in addition to
precipitation.

• High-dimensional search space is more difficult to populate
with a sufficiently dense, diverse and statistically
representative set of observations.

• Large tolerances must sometimes be allowed to ensure a
reasonable number of matches.

• For many pixels, retrieval will be determined by a very
small number of loosely matching data base entries.



Issues II

Fundamentally, reliance on a high-dimensional solution data
base using raw input channels implies

• Very large data base

• Long search times

• Non-robust statistics for infrequent combinations of
channel TBs

• A need to rigorously account for highly correlated
geophysical noise between channels.



Issues III

Above problems are greatly exacerbated over land

• Heterogeneous background types

• Poorer signal-to-noise ratio

• Much smaller training sample for given surface
classification



Objective I

• Demonstrate that the dimensionality of Bayesian retrieval
problem can be radically reduced (9 → 3) leading to
robust, high-quality retrievals using very compact data
base and efficient data extraction.

• Method can be readily incorporated into existing physical
and statistical retrieval frameworks – e.g., current PMW
algorithm. Simply replace large number of actual channels
with smaller number of optimally defined pseudochannels.

• Motivated by need for “S0” over-land retrievals, the
methods and benefits are demonstrated here most
immediately and clearly for over-ocean retrievals (single
surface class).

• Hot off the press: Preliminary land results too!



Objective II

Claimed benefits:

• Large contributing sample size (102 – 106) for most
retrievals despite moderately tight tolerances δ ∼ 1.

• Explicit reference to background noise budget in setting
tolerance.

• In addition to a single rain rate estimate for each pixel,
robust PDFs (e.g., percent likelihood of R > R0).

• Graceful handling of rare non-matches.

• Insight into “true” useful information content of passive
microwave channels with respect to retrievable rain cloud
properties.

• Database reduces to small pre-computed lookup table.

• Respectable global performance.



Data

• Matched TMI brightness temperatures and PR (2A25)
surface rain rates

• (De-)convolved to 19 GHz channel resolution

• One calendar year (2002) global data

• ERA-Interim analysis 6-hourly SST and TCWV.



Procedures I

Stage 1:

• Transform raw TBs: x = log(TS − TB)

• Compute global mean 〈x〉 and covariance Sx for all
non-precipitating scenes.

• Compute eigenvectors Ex , eigenvalues Λx of Sx

• Define transformed channels yi = [(x− 〈x〉)TEx ]i/λ
1/2
x ,i

• By design, 〈y〉 = 0 and Sy = I outside of precipitation

Summary: The 9 transformed channels y retain all information
found in the original TB , BUT they have been completely
decoupled AND have they have an uncorrelated total noise
variance (instrument plus geophysical) of unity outside of
precipitation.



Procedures II
Stage 2:

• We now apply the same transformation to precipitating
scenes with R > 1 mm/hr. The variance in each
transformed channel yi is now considerably larger than
unity. The added variance is due solely to the influence of
precipitation.

• For these raining pixels, we compute Sy ,r ≡ 〈yyT〉, with
eigenvectors Ey ,r and eigenvalues Λy ,r.

• We define the precipitation pseudochannels z ≡ yTEy ,r .

• Outside of precipitation, these 9 pseudochannels still have
zero mean and unit uncorrelated variance.

For precipitating scenes, only the first three (z1, z2, z3) have
variance σ2

z,i significantly greater than unity. We therefore
conclude that these contain virtually all extractable information
concerning the properties of the precipitation in the the scene.



Procedures III

Stage 3:

• Apply transformation TB → z for all ocean scenes
(N = 1.25× 108).

• Odd scenes used for retrieval database ; even scenes for
validation.

• Aggregate retrieval database into 5-D array: 3
pseudochannels (∆z ≈ 1) plus SST (∆SST = 5 K) and
TCW (∆TCW = 10 mm).

• Retrieval consists solely of indexing into array and
extracting precomputed statistics.

• Extremely fast: One year’s worth of global TMI data
processed in 2–3 hours.



Example I

Example: Hurricane Lili, October 2, 2002. T85V (left) and
T37H (right).



Example II

Three precipitation pseudochannels: PC1 (upper left), PC2
(upper right), PC3 (lower left), RGB composite (lower right)



Example III

Training sample size contributing to each pixel’s retrieval
results.



Example IV

Instantaneous retrieval comparison. Expected value of rain rate
from TMI retrieval (left), “true” rain rate from PR (right).



Example V

Bayesian probability of rain rate exceeding a specified
threshold: R > 0 (upper left), R > 0.1 (upper right), R > 1
(lower left), R > 10 (lower right)



Results (Ocean) I
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Pixel-by-pixel comparisons between 2A25 and TMI retrievals
over ocean (independent data only) for 2002.



Results (Ocean) II
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Annual total precipitation (independent data only) for 2002
from 2A25 (top) and from TMI Bayesian algorithm (bottom).



Results (Ocean) III
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Ratio (top) and difference (bottom) of TMI Bayesian retrieval with respect to 2A25 “truth” for 2002.



Results (Ocean) IV

0 1000 2000 3000 4000 5000 6000

Rainfall [mm] (2A25)
0

1000

2000

3000

4000

5000

6000
R

ai
nf

al
l [

m
m

] (
TM

I-3
)

2002 Ocean Rainfall,  1 ◦  Grid

1

10

102



Results (Ocean) V
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Results (Ocean) VI
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Results (Ocean) VII
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Index = [35,29,32], Rave=0.82, N=6918 
 Index = [48,38,32], Rave=3.53, N=1250  

Two examples of the ability to infer not only the expected rain
rate for a specific scene but also the probability of rain rate
exceeding specified thresholds.



Some key facts

• Although three pseudochannels are utilized, the third one
adds relatively little value. Retrieval performance only
slightly degraded using only two.

• Ocean data base consists of 176K entries occupying only
19MB but representing 114 million scenes in the training
set – an average of 650 training scenes per data base entry.

• In the event of no match, graceful recovery (i.e., valid
Bayesian retrieval with PDF) by tossing 3d, and if
necessary, 2nd pseudochannel.



Preliminary Experiments Over
Land

• Throw all non-ocean matchups into one single class.
• vegetated
• desert
• coastal
• inland water

• Exclude (for now) Ts < 275 K (potential snow surfaces)

• Redefine transformed brightness temperatures: x = TB/Ts

• Three global “pseudochannels” again used to isolate
precipitation signature against variable land background.

• Much poorer signal-to-noise ratio than over water.



Results (Land) I
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Pixel-by-pixel comparisons between 2A25 and TMI retrievals
over ocean (independent data only) for 2002.



Results (Land) II
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Annual total precipitation (independent data only) for 2002
from 2A25 (top) and from TMI Bayesian algorithm (bottom).



Results (Land) III
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Ratio (top) and difference (bottom) of TMI Bayesian retrieval with respect to 2A25 “truth” for 2002.



Results (Land) IV
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Results (Land) V
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Next Steps

• Current ocean version of PMW algorithm can be easily
modified to utilize 3 pseudochannels instead of 9
brightness temperatures.

• Should greatly improve number of valid matches while also
using more rigorous match criteria.

• Likely improvement in light rain detection skill.
• More robust posterior PDFs of rain properties.

• With stratification of land regions into a small number of
self-similar classes, derive pseudochannels and data bases
for each class.

• Land surfaces with Ts < 275 K will be a separate class.
• →“S0” retrieval scheme for “unknown” surface

emissivities.
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