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Emerging view of MJO
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TRMM TMI precipitation vs.
column water vapor:

Sharp increase in P at “critical”
CWYV, maximum rainfall variance
and occurrence probability near
critical value
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Approach

Wheeler-Hendon + NOAA CPC MJO indices: 10 boreal non-
summer MJO peaks (2006-2010) in equatorial Indian Ocean,
Maritime Continent, West Pacific; focus on transition from
suppressed to disturbed phase (10-14 days before peak)

TRMM PR storm heights + TMI column water vapor

CloudSat/CALIPSO GEOPROF-LIDAR convective cloud top
heights + AMSR-E column water vapor

GISS Model E2 GCM CMIP5 version + stronger convective
entrainment and rain evaporation



PR storm height statistics during MJO transition phase
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* Deepest storm heights at intermediate rather than wettest CWV —
why?

 Some storms as deep as 16-17 km — are these real?
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Sample PR reflectivity
profiles for one case:
~30 dBZ up to 15 km

Isolated cells

All located in Maritime
Continent, over very
warm water, maybe
continental influence?



Morita et al. (2006): ~11 km TRMM PR rain top heights
and LIS lightning during suppressed MJO phase
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DYNAMO Gan Island case,
10/3/11*:

* Fairly low CWV due to
mid-troposphere dry layers

*Thanks to Eric Maloney and Bob Houze for - But fairly unstable lapse
pointing out this case on the DYNAMO blog rate
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Cloud Top Height (km)
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CloudSat/CALIPSO convective cloud top heights:
Deepest tops at wettest CWV just as deep as those at
lower CWV; GCM can match data but only with strong entrainment
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How does GCM produce
convection depth variance
for a given value of CWV
with a deterministic
parameterization?

Deeper when PBL is a bit
warmer/wetter

Gregory entrainment
scheme (& ~ B/w?) implies:

Warmer/wetter rising parcel
-> stronger updraft ->
weaker entrainment ->
better able to penetrate

20, drier mid-troposphere



Summary

TRMM PR storm heights indicate large variability in
convection depth at intermediate CWV during transition
from suppressed to disturbed phase of MJO

Storm heights deeper when column is moderately moist
than when it is most humid; associated with isolated
convective cells

Comparison to CloudSat/CALIPSO indicates that peak
convection depth is similar at intermediate and high CWV;
PR storm height behavior thus suggests stronger storms in
more unstable environment when CWV is lower

GISS GCM is capable of reproducing observed transition

from shallow to deep convection and associates deeper
convection with warmer, wetter PBL; but weak entrainment

must be restricted to very specific conditions



