

Integrated Precipitation and Hydrology Experiment (IPHEx) in the Southeast – Observations and Models to Improve Hydrological Forecasting in Regions of Complex Terrain

Jing Tao, Miguel Nogueira, Ana P. Barros

Department of Civil & Environmental Engineering, Pratt School of Engineering, Duke University, NC

1. Project Overview

In anticipation of NASA's Global Precipitation Measurement (GPM) ground-validation activities in the SE United States and in synergy with NOAA's Hydrometeorology Testbed-Southeast Pilot Study (HMT-SEPS) in western North Carolina under the auspices of the Integrated Precipitation and Hydrology Experiment (IPHEx, http://iphex.pratt.duke.edu/), a high-resolution dataset is being developed to provide the hydrologic modeling community with common control forcing and landscape attributes to facilitate multi-scale, multi-purpose hydrologic applications ranging from flash-flood forecasting to basin-scale water resource assessments in the Southeast (IPHEx-H4SE). In the first phase of the project, the goal is to generate quality hydrometeorological forcing data sets at high spatial and temporal resolution (1km×1km, hourly time step) for the five-year time period 2007-2011 with a focus on the river basins with headwaters in the Southern Appalachians: Upper Tennessee River Basin (56.573 km²). Savannah River Basin (27.110 km²). Santee River Basin (39,862 km²) and Yadkin-Pee Dee River Basin (46,310 km²). Space-time varying land surface properties such as broadband albedo, broadband emissivity, fractional vegetation coverage and leaf area index are derived from MODIS products. The original products are re-projected and composited to the study area, bi-linearly interpolated to basin grids, and then linearly interpolated into hourly time steps. Quality-control and temporal filtering for these landscape attributes data are performed to reduce the discontinuity caused by cloud contamination. Precipitation is generated from NCEP/EMC 4KM Gridded Data (GRIB) Stage IV hourly data using bi-linear interpolation and orographic corrections. Integration of Stage IV data with precipitation observations from research networks in the region provides dynamic relationships for improving precipitation accuracy in mountainous terrain. The atmospheric forcing data are extracted from the North American Regional Reanalysis (NARR) products originally at 32-km spatial resolution and 3-hour temporal resolution. Elevation adjustments and corrections to near-surface variables are applied between NARR envelope terrain and local terrain at every time-step based on predicted atmospheric conditions (e.g. using dynamic lapse rates). Special bias corrections for downward shortwave radiation are applied through dynamical adjustment, accounting for localized elevation and topographic effects. The temporal interpolation for shortwave radiation is integrated in the topographic correction to capture the local diurnal solar cycle based on solar zenith angle. Preliminary hydrologic modeling results over the Upper Tennessee River Basin are provided Figure 1 – – The regional map of NOAA HMT-SE Pilot Study (HMT

SEPS), which is planned for May 2013 - Sep. 2014 in western NC

SC

Figure 2 - The four drainage basins of interest in this project

namely Upper Tennessee River Basin(UTRB), Savannah Rive

Basin(SVRB), Santee River Basin(SRB) and Yadkin-Pee Dee Rive

NC

aiming to address opportunities for improving Quantitative

forecasts and understand the regional water cycle.

(http://hmt.noaa.gov/field_programs/hmt-se/

Precipitation Estimation(QPE) by coordinating a number of instruments and conducting field campaigns, to improve weather

 Exclusion, L. and Jonsson, P., 2011, Innesat 3.1 Software Manual, Lund University, Sweden.
Dubayah, R., Paul, M., 1995. Topographic solar radiation models for GIS. International Journal of Geographical Information Systems, 9(4): 405-419.

[3] Cosgrove, B.A. et al., 2003. Real-time and retrospective forcing in the North American Land Data Assimilation System (NLDAS) project. Journal of Geophysical Research-Atmospheres, 108(D22).

Acknowledgments: This research was supported by the NASA PMM program