

Ground-based activities and notional studies in support of GPM and beyond

Alessandro Battaglia

Frederic Tridon, Pavlos Kollias and the Bonn radar group

Outline

 Triple frequency rain gamma DSD retrievals at ARM sites (work in progress, UK- NERC PERICLES project)

Opportunities in collaboration with Germany in the Geoverbung test bed (proposal in nuce, open for ideas)

Notional studies for GPM and future multifrequency (Doppler) missions (covered by Simone)

Premise: continuous triple frequency Doppler rain observations

K_a observed Doppler velocity and width

Proper dealiasing is carried out using UHF as a reference point

W-observed Doppler velocity and width

0/:30 0/:35 0/:40 0/:45 0/:50 0/:55 UTC time of the 12/06/2011

W-band: errors in v_D and σ_D

W-observed Doppler velocity and width

Lhermitte, 90

Step1=Shape of DSD from Δv_D and $\Delta \sigma_D$

Not spectral based like in Firda, 98

LUT inversion based on the assumption that Δv_D and $\Delta \sigma_D$ not affected by w, turbulence and calibration errors.

Error of retrieved parameters based on measurement noise uncertainties

Step2=N₀* from calibrated Z_{UHF}

Step3= optimal estimation based on ΔZ respect to lower gate Initial guess After convergence

eight [km]

ΔZ

ΔZ

-20

Ο.

-30

ΔZ_W

-10 ∆Z [dB] 0

10

Profiles on the 2011-06-12 08:03:06

μ[-]

20 25

ц D

10^e

Height [km]

N_0^{*} , μ , D_m errors from optimal estimation

Forward reflectivities of retrieved fields

Observed radar reflectivities

Preliminary conclusions and roadmap

First results are encouraging: convergence is reached for most of the profiles → there
is physical consistency between triple frequency Doppler measurements at very high
temporal and spatial resolution. More tests needed!

Generalization of optimal estimation step

 adaptive two/three wavelength algorithm, thus extending the rain rate range (K_a and UHF continuously operated in vertical mode)
 all observables (without adding too many variables in the cauldron).

- Better assessment of errors in Δv_D and $\Delta \sigma_D$, e.g. including errors due to mismatched volumes (scanning vs vertically point Ka).
- Cross-validation with other techniques (W-band only, S-band profiler, ground).
- Vertical correlation of DSD parameters for retrieval developers and modellers (rain processes).

The Polarimetric Weather Research Radars within the Bonn Test Bed

C (1) yes

DWD network is currenlty being upgraded to polarisation diversity.

DWD also switched over to a 5min scan strategy.

The idea is to include adjacent polarimetric C-band radars from DWD as soon as available and extent the spatial coverage of the local 3D composite

Bonn area: high-resolved 3D-composite

- 500m * 500m * 250m spatial resolution
- 5 minutes temporal resolution

X-Band radar data (Bonn, Jülich)

- Based on 13 PPIs of both radars
- Polarimetric C-band radars will be included as soon as available
- Variables: Z, Z_{DR} , K_{DP} , Rho_{HV} , RR
- Corrected for
 - Attenuation
 - Partial beam blockage
 - non-meteorological signals
 - Advection within the 5min interval

MSG- and LINET-data

- Evaluation of quality of PMW rain retrieval over the test-bed as a function of precipitation regime (surface/atmosphere thermodynamic state, vertical cloud structure), sensor, NUBF;
 Critical assessment of the G-PROF Bayesian
 - database (sub-segmentation/creation of regional specific database). Identification of critical regional knobs.

Questions?

After convergence

Germany: 2D-composite from DWD radar network

- 1000 m horizontal resolution
- 5 minutes temporal resolution
- RADAR: RX product METEOSAT SEVIRI:
- 12 spectral channels (Vis/IR)
- CMSAF and NWCSAF products: cloud phase, optical depth, cloud effective radius, cloud water path, cloud mask, cloud top height, cloud type
 LINET: flash rate

400 km

3D and 2D composites

Source	Dimensions/ Resolutions	Areal Coverage	Parameters	
METEOSAT SEVIRI	2D/ H 1 km	Germany	12 VIS/IR Channels, CTH, CT, CMA, CWP, R _{EFF} , COT, CPH	
Geoverbund X-Band Radars	3D/ H500m, V250m	Bonn/Jülich Area	Z_{H} , Z_{DR} , K_{DP} , RHO_{HV} , RR , Z_{MIN} , Weight (HMC, LWC, U, V)	
DWD C-Band Radars	2D (3D)/ H1km (V250m)	Germany	$Z_{H} (Z_{DR}, K_{DP}, RHO_{HV}, RR, Z_{MIN}, Weight, HMC, LWC, U, V)$	
LINET Lightning Network	2D (3D)/ H 1 km	Germany	Total Lightning, (+/- charge)	

- 1) Evaluation of quality of PMW rain retrieval over the test-bed as a function of precipitation regime (surface/atmosphere thermodynamic state, vertical cloud structure) and sensor;
- 2) Critical assessment of the G-PROF Bayesian database (sub-setting/creation of regional specific database);

,

JOYCE: Jülich ObservatorY for Cloud Evolution

- Scanning 35 GHz cloud radar MIRA¹
- Scanning 14 channel microwave radiometer² with IR pyrometer³
- Scanning Doppler wind lidar⁴
- Atm. emitted radiance interferometer⁵
- Total Sky Imager TSI⁶
- Laser ceilometer CT25K⁷
- Micro Rain Radar⁸, sodar⁹
- Max-DOAS¹⁰
- Radiation sensors¹¹
- 120 m meteorological mast¹² including eddy covariance station

Next May-June first field camapign ADMIRARI will also be operated at Juelich

Continuous triple frequency Doppler rain observations

K_a observed Doppler velocity and width

W-observed Doppler velocity and width

W-band: errors in v_{D} and σ_{D}

Step1=Shape of DSD from Δv_D and $\Delta \sigma_D$

Step2=N₀* from calibrated Z_{UHF}

Retrieved DSD parameter

06:05 Hour of the 12/06/2011

06:15

06:20

06:25

05:45

05:50

05:55

 N_0^{*} , μ , D_m errors from optimal estimation

Forward reflectivities of retrieved fields

Observed radar reflectivities

94 GHz

2.0