

BUILDING THE GV COLUMN: PHYSICAL VALIDATION OF GPM ALGORITHMS

Steve Nesbitt, K. Gleicher, G. Duffy, G. McFarquhar University of Illinois

With contributions from

V. Chandrasekar, D. Hudak, W. Petersen, A. Bansemer, A. Heymsfield, A. Neumann, M. Poellot, S. Tanelli, C. Williams

Rain-Profiling Algorithm for the TRMM Precipitation Radar

Building on TRMM's legacy... TOSHIO IGUCHI Global Environment Division, Communications Research Laboratory, Koganei, Tokyo, Japan

TOSHIAKI KOZU Department of Electronic and Control Systems Engineering, Shimane University, Matsue, Japan

> ROBERT MENEGHINI NASA Goddard Space Flight Center, Greenbelt, Maryland

> > JUN AWAKA

Department of Information Science, Hokkaido Tokai University, Sapporo, Japan

Ken'ichi Okamoto

Department of Aerospace Engineering, Osaka Prefecture University, Sakai, Japan

(Manuscript received 24 October 1999, in final form 28 April 2000)

FIG. 4. Schematic presentation of the profiles of α and a. The initial values of a, b, and α are given at five points, A, B, C, D, and E. When a bright band is detected (a), C is chosen at the brightband (BB) center, B is two range bins above C, D is two range bins below C, A is the top of the echo, and E is the lowest valid range bin. If there is no bright band (b), C is chosen at the estimated freezing height, and B and D are 750 m above and below C, respectively. Here A and E are the same as before. Coefficients between these points are calculated by interpolation. Note that the profile for stratiform rain without a bright band is similar to that for convective rain, but their actual values are different.

TABLE 1. Initial $k-Z_e$ and Z_e-R parameters $(k = \alpha Z_e^{\ \beta}, R = a Z_e^{\ b}, Z_e = a'' R^{b''})$.

		Position shown in Fig. 4						
Parameter		А	В	С	D (0°C water)	20°C water		
Stratiform	α	0.000 086 1	0.000 108 4	0.000 414 2	0.000 282 2	0.000 285 1		
	β	0.792 30	0.792 30	0.792 30	0.792 30	0.792 30		
	a	0.013 98	0.012 63	0.004 521	0.020 10	0.022 82		
	b	0.7729	0.7644	0.7288	0.6917	0.6727		
	<i>a</i> "	250.8	304.6	1649.3	283.9	275.7		
	b''	1.294	1.308	1.372	1.446	1.487		
Convective	α	0.000 127 3	0.000 410 9	0.000 410 9	0.000 410 9	0.000 417 2		
	β	0.7713	0.7713	0.7713	0.7713	0.7713		
	a	0.020 27	0.034 84	0.034 84	0.034 84	0.040 24		
	b	0.7556	0.6619	0.6619	0.6619	0.6434		
	<i>a</i> "	174.1	159.5	159.5	159.5	147.5		
	b''	1.323	1.511	1.511	1.511	1.554		
Others	α	0.000 127 3	0.000 159 8	0.000 410 9	0.000 410 9	0.000 417 2		
	β	0.7713	0.7713	0.7713	0.7713	0.7713		
	a	0.020 27	0.018 71	0.034 84	0.034 84	0.040 24		
	b	0.7556	0.7458	0.6619	0.6619	0.6434		
	<i>a</i> "	174.1	207.4	159.5	159.5	147.5		
	<i>b</i> ″	1.323	1.341	1.511	1.511	1.554		

"We assume that μ is constant and takes a value of $\mu = 3$." "The coefficients in the *k*–*Ze* and *Ze*–*R* relations are calculated for snow– water mixtures with fractional water contents of 17%, 1.7%, and 1.1%..."

a. Huntsville _{om} vs. D_m b. Huntsville μvs. D_m 1.5 20 best fit Constraint 15 1.0 μ (unitless) 5 01 σ_m (mm) 0.5 ما 0.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 d. MC3E μ vs. D_m c. MC3E om vs. Dm 1.5 20 bound bound 15 1.0 μ (unitless) 2 σ_m (mm) 0.5 5 Ω 0.0 |_ 0.0 0.5 1.0 1.5 2.0 2.5 3.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 e. GCPEX om vs. Dm f. GCPEX_µ vs. D_m 1.5 20 15 1.0 σ_m (mm) μ (unitless) 10 0.5 5 0 0.0 -0.0 0.5 2.5 1.0 1.5 2.0 3.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 g. LPVEX σ_m vs. D_m h. LPVEX µ vs. D_m 1.5 20 15 1.0 σ_m (mm) μ (unitless) 10 0.5 0.0 **-**0.0 0.5 1.0 1.5 2.0 2.5 3.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 D_m (mm) D_m (mm)

Results from the surface DSD WG are encouraging (Williams et al, submitted to JAMC)

Do these results extend up the column into the melting layer, mixed phase, and snow?

$$N(D) = \overline{N_0 D^{\mu} \exp(-\Lambda D)}$$

$$\sigma_m^2 = \frac{\sum_{D_{\min}}^{D_{\max}} (D - D_m)^2 D^{\mu+3} \exp(-\Lambda D) dD}{\sum_{D_{\min}}^{D_{\max}} D^{\mu+3} \exp(-\Lambda D) dD}$$

$$\sigma_m^2 = \frac{D_m^2}{\Lambda m}$$

 $4 + \mu$

I

Actions: GPM-GV Column sub-WG

- Goal: derive unbiased assumptions for parameters such as hydrometeor habit, density, PSD properties, cloud liquid water with uncertainties to constrain algorithm assumptions and scattering and absorption models for GPM algorithms (passive and active frequencies)
- Needs
 - Careful side-by-side analysis of column and surface data that has been and will be collected
 - Understanding of scattering properties of ice, melting particles, selection of appropriate models
 - Retrieval algorithms for ice and mixed phase hydrometeors
 - Vetted cloud-resolving model hydrometeor profiles
 - Relationships between these quantities and "environment" or "regime"
 - Propagation of uncertainties among these quantities

Building the GV column

GCPEx GV measurements			Applicable Measured and/or Diagnosed Parameters																
	Instruments	Measurable	Ż	Z DFR	R	PSD sfc	PSD col	PID	ρь	$ ho_p$	7	Qv	Q _{soll}	CN, CCN	TW _c	CW	IW	ε/σ_{stc}	TB
Ground Radar and	C-band Dual-Pol	Z, Vr, W, ZDR, Φ_{DP} , ρ_{hv}	X		X	X	X	X											
	D3R Ka/Ku Dual-Pol	Z, Vr, DFR, W, ZDR, Φ_{DP} , ρ_{hv} , LDR	X	X	×	X	X	X											
	X-band profiling	Z, Vr, W	\mathbf{X}		\boxtimes			X											
Profiler	MRR2 profiling	Z, Vr, W	X		X	X	X	X											
	W-band profiling	Spectra (Z, Vr)	X		\boxtimes	X	X	X								X			\mathbf{X}
	Dual freq. LIDAR	σ					X												
	2DVD/Parsivel/POSS	DSD, shape, fall spd	\mathbf{X}		\mathbf{X}	X		X							T				
	Pluvio2 SWE Gauges	SWE Rate			\boxtimes														
	TPS 3100 Hot Plate	SWE Rate, Wind, T			\boxtimes						\mathbf{X}								
Ground	Soundings	P, T, RH, wind									\mathbf{X}	X							
Gauge and Radiometer	ADMIRARI Radiometer, MRR	T _B 19, 37 Z 24 GHz	X		\boxtimes											×			
	EC TP3000 Radiometer	TB 23-59 GHz									\mathbf{X}	X				X			
	EC Ground-Staring Radiometer	TB 10-89 GHz															X		X
	EC Surface Met. Inst.	P,T,RH, wind									\mathbf{X}	X							
Aircraft	APR2 (Ka/Ku Radar)	Z, Vr, DFR, W, ZDR, Φ_{DP} , ρ_{hv} , LDR	X	X	×		X	X											
	CoSMIR (Radiometer)	T _B 37,89, 165.5,183 H/V															×	X	X
	CPI/2D-C/CIP, HVPS	Precip. Image	\mathbf{X}		\boxtimes		X	X	\mathbf{X}	X					X		×		
	CDP	Cloud Water/Spectra					X									\mathbf{X}			
	Nevzorov	Total water							\mathbf{X}						X	X	×		
	King Probe	Cloud water bulk														\mathbf{X}			
	Rosemount Icing Probe	Supercooled water														X			
	Aircraft T/RH/Gust	Air T, RH, wind									\boxtimes	X							

Courtesy Walt Petersen

Matched aircraft in situ – aircraft radar/radiometer – ground radar products

→ Easy to use hypothesis-testing tools for algorithm developers and cloud resolving modelers in collaboration with CSU/B. Dolan (radar QC & HID), NCAR/A. Heymsfield, A. Bansemer (microphysics)

MGRAD – Merged Ground-based Radar-Aircraft Data

Space-time matching of ground-based polarimetric scanning radars with aircraft microphysics (C3VP, LPVEX, MC3E, GCPEX,...)

SatSimRAD – Satellite Simulator Radar-Aircraft Data

LPVEX MGRAD 1.0 available for Sept 21, Oct 20 MC3E MGRAD 1.0 is processing en masse MC3E SatSimRAD beta (today's

discussion)

UND Probes in MC3E and GCPEX

Probe	Characteristics					
Cloud Droplet Probe	0.9 to 50 µm					
Cloud Imaging Probe	25 µm to 1.55 mm					
Cloud Particle Imager	2.3 µm to 100 µm					
2-D Cloud Probe	50 µm to 1.6 mm					
HVPS	150 µm to 1.92 cm					
LWC Probe	Bulk LWC					
Nevzorov Total Water	Bulk TWC					
Nevzorov Ice Water	Bulk IWC					

MGRAD details

 $R_{h}=R_{z}=500 \text{ m}$ $T_{h}=5 \text{ min}$ At each aircraft point, apply a Cressman filter to the radar data in space and time $d_{s}^{2} = \left(\frac{x_{r} - x_{a}}{R_{h}}\right)^{2} + \left(\frac{y_{r} - y_{a}}{R_{h}}\right)^{2} + \left(\frac{y_{r} - z_{a}}{R_{h}}\right)^{2}$ $d_t^2 = \left(\frac{t_r - t_a}{T_h}\right)^2$ Experimenting with other $X = \frac{\sum_{i=0}^{n} \omega_{s} \omega_{t} X_{i}}{\sum_{i=0}^{n} \omega_{s} \omega_{t}}$ methods, such as Discrete Fourier Transform in t $\omega_{s,t} = \begin{cases} \frac{1-d^2}{1+d^2} & \text{if } d^2 \le 1\\ 0 & \text{if } d^2 > 1 \end{cases}$

Building the GV column

18 Feb '12 GCPEX – EC King City/NASA D3R comparisons

GCPEX – JPL APR-2/NASA D3R comparisons (Data – S. Tanelli & Chandra)

27-Jan-2012 02:27:29 - 27-Jan-2012 02:32:49

D3R-20120127-022308

GCPEX 27 Jan 2012 Spiral UND-NCAR Time series and DSDs from CIP+HVPS

We have variety – and lots of it!

Just from GCPEX:

	January 19	January 27	January 28	January 30-31
Precip Type	Snow	Freezing Rain	Snow	Snow
# of Citation Spirals	4	2	7	1
Ground sites w/in spirals	CARE(4) Steam Show(4) SkyDive(4)	CARE(2) Steam Show (2) SkyDive(2)	CARE(4) Steam Show(4) SkyDive(4) Huronia(3)	CARE(1) Steam Show(1)

February 12	February 14	February 16	February 18	February 24
Lake Effect Snow	Snow	Snow	Snow	Snow/Mixed Phase
1	3	0	12	7
Steam Show(1) SkyDive(1)	CARE(2) Steam Show(1) SkyDive(1) Huronia(1)		CARE(12) Steam Show(12) SkyDive(12)	CARE(4) Steam Show(4) SkyDive(4) Huronia(3)

Building the GV column GFS - ECMWF U-wind (m/s) 100

1

Building the GV column

McFarquhar et al. (2013), in prep.

Propagation of uncertainties Necessary to quantify phase space for Gamma SD parameters

determine how the three-dimensional volume in $N_o - \lambda - \mu$ phase space depends on cloud or environmental parameters

Weather Research and Forecasting Model (v3.4) runs (1 km inner nest) were conducted using Goddard, WSM6, and WDM6 microphysics for 21 Sept and 20 Oct cases

Exponential DSD properties compared with aircraft in situ, 2DVD, and C-Band dual pol observations. →Here 2DVD observations are compared

Gleicher et al. (2013), *in prep.*

Weather Research and Forecasting Model (v3.4) runs (1 km inner nest) were conducted using Goddard, WSM6, and WDM6 microphysics for 21 Sept and 20 Oct cases

Exponential DSD properties compared with aircraft in situ, 2DVD, and C-Band dual pol observations. →Here 2DVD observations are compared

Gleicher et al. (2013), in prep.

Disagreements in rain rate driven by improper fall speeds in WRF more than LWC WRF assumes drops too small (large λ) thus

Conclusions

- Lots of work to do; need to leverage DSD working group (radar+DSD+algorithm scientists) to maximize analysis to improve algorithms and models
- Team members: participate in the DSD working group!
- Future field campaign observational strategies will include column profiling and use lessons learned (GPM + others) come to Hydrology session and see Dan Cecil's poster about a new South American field campaign)

Comments?

- Contact:
 - Steve Nesbitt snesbitt@illinois.edu +1 217 244 3740