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Window-Channel Radiometers

TRMM/GPM window-channel radiometers.

Table 1: Channel complement in terms of frequency and Table 2: Spatial resolution by channel for

TMI pre-boost 60x36 30x18 27x17 16x10  7x4 1.0
TMI post-boost 68x41 35x21 31x19 18x11  8x5 1.3
SSM/l nla  69x43 60x40 37x29 15x13 56

SSMIS nfa  74x45 73x45 45x29 16x13 6.9
AMSR-E 51x30 27x16 31x18 14x8 6x4 0.9
AMSR2 42x24 22x14 26x15 12x7 5x3 0.7

GMI 32x19 18x11 16x10 16x9 7x4 0.6

WindSat 38x25 27x16 20x12 13x8 n/a 0.5
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Sun-angle dependent corrections for SSMIS on board F17. Note that the patterns are
strongly correlated with the reflector temperature (shown above), however, solar intrusions
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The above bar chart shows the impact of 1K calibration biases for each of the GMI
window channels on the precipitation retrieval over oceans. The largest impact is
with the 37 GHz channels, particularly the 37v channel at the cold end.
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The above figures show the change in precipitation associated with changes in the
nonlinearity of the AMSR2 calibration. The top panel corresponds to the original JAXA
nonlinearity corrections while the middle panel shows the results using the Remote
Sensing Systems (RSS) corrections. The difference is shown in the bottom panel
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The top row shows a comparison precipitation estimates from Hurricane Arthur from GMI, AMSR2
and SSMIS. The second row shows a comparison of rain/snow estimates from GMI without (low-freq
channels) and with (all channels) the high-frequency 166 and 183 GHz channels along with the

the spatial

The most significant differences between the constellation
radiometers involve the available channels (i.e. frequencies) and
resolution. A comparison of the channel
complements for the TRMM/GPM constellation window-
channel radiometers is shown in Table 1 and a comparison of
the spatial resolution for these sensors is provided in Table 2.
For precipitation retrievals the 10 GHz channels were added to
TRMM TMI and subsequent radiometers, while GMI added the
high-frequency 166 and 183 GHz channels for sensitivity to rain
and snow over land. GMI also has the highest spatial resolution
of any of the sensors. The four SSMIS sensors on board F16, F17,
F18, and F19 provide substantial temporal sampling over the
globe along with the high frequency channels, but have much
lower spatial resolution impacting their ability to resolve details
within convective storm systems.
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The images of precipitation retrievals from Hurricane Arthur (above left)
show the ability of the high-resolution GMI sensor to resolve fine details
around the eye, particularly versus the F16 SSMIS sensor. The above
figure shows a comparison of the resulting distribution of precipitation
intensity from the window-channel radiometers. The lower resolution of
the SSMIS sensors dramatically shifts the distribution to the right (lower
intensities) as it averages over the larger field-of-view and thus cannot
capture the most intense precipitation in the core of convective systems.

The precipitation retrievals shown in the lower row on the left reveal the
impact of the addition of the GMI high-frequency channels, particularly for
retrieving snowfall. A comparison with gridded NMQ radar estimates in the
lower right panel shows significant improvement in the ability of the GMI
retrieval to detect both the snowfall area and intensity. These channels
are especially important in distinguishing between snow on the ground
and falling snow.
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T R M M T M I TMISpecs  10.65v/h  19.35v/h 213v 37.0v/h  85.5v/h and other thermal effects are also a factor. The magnitude of the corrections for the high-
DT x CT Resin km | 68.1x41.3 | 34.6x209 |31.1x18.9] 18.3x11.1 | 7.8x4.8 frequency channels are also much larger than for the window channels.
’ ] o Beamwidth (deg) | 3.68 [3.75| 1.90 | 1.88| 170 [1.00|1.00|0.42{0.43

Satellite/Instrument Characteristics Beam Efficiency (%) o3 96 98 ol oz | 82 | 5 Re |ona| Va r|a b|||t

. ’C\l)oiTiTalll‘ElA‘ 2235 NEDT (K)| 0.63 [0.54] 0.50 [0.47]| 071 [0.36]031]052]0.93 g Y
rbit Inclination d
: _ : Band Width (MHz) 100 500 200 2000 3000 . _ _ _

Lotfal Obs. Time Variable (Precessing) Feodhorns 1 1 1 1 1 GMI: 18.7v vs. F18: 19.35v GMI: 18.7v vs. AM2: 18.7v o5 One of the primary approaches to intercalibrating the constellation

A't:”de 402 km Y R — — — - so  radiometers is the double difference technique. This approach uses

Reflector Size 61cm . . . . .

42 coincident observations between the reference sensor (GMI) and the
a4 target sensor (e.g. AMSR2) matched closely in space and time. The
26 precessing GPM orbit crosses the orbits of the sun-synchronous
1.8 satellites several times a day. The difference between the observed
Tb is then subtracted from the difference between the simulated Tb.
The resulting double difference between the observed and simulated

4.1

SUMMARY

(or expected) Tb differences provides an estimate of the calibration

difference. Errors in the simulated Tb associated with imperfect
« estimates of ocean surface and atmospheric state parameters can

result in regional patterns in the resulting double differences. We are
09 currently working on developing improved non-precipitating retrievals
o using the GMI Tb as input in order to reduce these regional errors in
the calibration estimates.
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3. Regime-dependent biases in the precipitation retrievals

* The latest (i.e. final) GMI calibration looks very good in an absolute sense as well as quite stable, making it an excellent
reference for the other radiometers in the GPM constellation. There is no evidence of solar intrusions, an emissive reflector,
calibration nonlinearities, warm load problems, or other issue impacting previous radiometers.

» Corrections for calibration issues have been developed and applied for several of the radiometers. These include TMI
emissive reflector and solar impacts on SSMIS. The initial intercalibration for all of the sensors relative to GMI are currently
being finalized for delivery to the PPS.

« A number of monitoring products are updated daily to identify potential issues with the raw count/Ta data, the calibration
stability, and the ocean precipitation estimates (http://rain.atmos.colostate.edu/XCAL). This has helped identify the failure of
the F16 SSMIS 183 GHz channels in December 2014 and the 150 GHz channel in May 2015.

2. Impacts on the Retrieval Algorithm

« Differences in channel complements and spatial resolution have the largest impact on the resulting distribution of precipitation
intensity. The GMI high-frequency channels in particular are very useful for improving snowfall detection and intensity.

 AMSR2 retrievals over ocean are significant higher than for the other sensors. The AMSR2 nonlinearity correction appears to
be at least part of the issue, but this has not yet been fully resolved.

» See poster by Henderson et al. “Examining Regime Dependency of Z-R Relationships: Observations from Kwajalein, RMI”
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Microwave Cross-Track Sounders
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MHS Specs 157v 183+7v  183+3h  183t1h =
NEDT (K)| 0.22 0.34 0.51 0.40 0.46 o
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The figure on the left shows time series of mean tropical oceanic precipitation from the operational algorithm for the
GPM window channel radiometers. There is some variability associated with extreme events (e.g. hurricanes), but
the mean values are very similar and there are no obvious trends.

ATMS Channel Specifications

165.5h

ATMS Specs  23.8v 31.4v 88.2v 183+7h 183%#4.5h 183+3h 183+1.8h 183*lh

F16
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T T T T < T T T =T T T T

Beamwidth (deg) | 5.2 >-2 2.2 1.1 1.1 11 11 11 11 z The above figures show the time series of NEDT (left) and mean antenna temperatures over ocean (right) for the

NEDT (K) [ 0.9 0.9 0.5 0.6 0.8 0.8 0.8 0.8 0.9 N ] SSMIS 183+/-1 GHz channel on F16, F17, F18, and F19. There is a significant increase in the noise for this channel

Band Width (GHz) | 0.27 0.18 2.0 30 20 2.0 1.0 1.0 0.5 gy %Q\;@\u'p&\; S @\&; S g0 %o\a'&@éw\a' £° 50 6 5 on board F16 as well as an increasing trend in the antenna temperatures, which is not evident in the same channel
N SN I S SR A LN N R from the other SSMIS sensors.
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