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Background

Improved characterization of land surface

microwave emissivity promises to improve over-land
precipitation retrievals. Physically-based, or “forward”,
models yield dynamic estimates that reflect current land
surface conditions. Unfortunately, evaluations of forward
models find predictive power lacking (Ringerud et al.,
2014). A major source of error in these models is poor
parameter specification, which calibration can address.

2. Calibration experiment

Spatial domain: U.S. Southern Great Plains (SGP;34:39 lat, -100:-95 lon)
Forward models: Noah 3.3-CRTM, Noah 3.3-CMEM

Reference dataset: Cloud-cleared AMSR-E retrievals (Ringerud, 2014)
Calibration period 2008 warm season (1APR2008-30SEP2008)

Validation period: 7 years snow-free (1JUL2004-31JUL2011)

Run resolution: 0.25 deg., hourly LSM time step

MWE = “Microwave emissivity”
LSM = “Land surface model”
MEM = “Microwave emissivity model”
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Figure 1. A forward model couples an LSM to an MEM. The LSM, driven by
meteorological forcings and enforcing water and energy balance, generates
the land surface states required of the MEM. The LSM parameters affecting
soil moisture are specified on a very limited empirical basis (Harrison et al.,
2012) as are other LSM parameters. Important MEM parameters are similarly

poorly specified (Weng et al., 2001).
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Figure 2 The SGP has varied land cover (left) and soils (right) that impact
soil moisture and vegetation dynamics, and in turn, the dynamics of

emissivity
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Figure 3 LIS configuration for calibration experiment.
2. Calibration Results
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Figure 4. Statistics before calibration (blue) and after calibration

(maroon). Results above are shown for Noah3.3-CRTM2 calibrated
to (10.65V,10.65H).
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Figure 5 Spatial patterns in anomaly correlation and RMSE are much
improved, as shown here for 10.65H GHz with Noah-CRTM

Aug. mean Aug. 2, 2010, 19:00 Aug. 4, 2010, 08:00 Aug. 18, 2010, 19:00 Aug. 25, 2010, 19:00 Aug. 27, 2010, 08:00 Aug. 27, 2010, 19:00

.' i
_ [ _
H 5 10 15 20 5 10 15 20 5 10 15 20 5 10 15 20 o 10BN 5 0 1520

20 - 0 T 'lﬁ 1 20

20

AMSR-E

15

10

Calibrated Forward

5 1 15 5 10 15 20 SR Oae S 101520 5 0 15 2 5 10 15 20 ¢ 10 15 2

Figure 6 Instantaneous images of emissivity in August 2010 for 10H GHz

Conclusions

Calibration significantly improves the agreement of
forward modeled and retrieved emissivity. Calibrated
Noah3.3-CRTM yields ~0.02 RMSE (as averaged
across channels) and yields spatially coherent fields.
Calibrated Noah3.3-CMEMS3 results (not shown) are
very similar. Improvements were achieved with a short
calibration period (1 warm season). Forward models
can be improved with attention to LSM and MEM
modeling deficiencies.
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