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Simple statistical models proved reliable in predicting clear-sky emissivities over the SGP (Table 1), better 
than alternatives involving forward modeling (though with some caveats as noted in table footnotes).  The 
approach is relatively easy to implement but needs testing globally.

Gains in forward model performance, particularly at lower frequencies, can be secured with calibration.  As 
the semi-empirical approach draws on un-calibrated forward modeling at low frequencies, we anticipate 
such gains but this, too, needs to be tested.

The  predictive  power  of  forward  models  for  microwave 
emissivity estimation is severely limited (e.g., Ringerud et al., 
2014).  Here,  the models  are calibrated to address the widely 
recognized problem of poor parameter specification.

Models  are  relied  upon  for  prediction  at  one  low 
frequency, and then associated co-variances are used to 
predict at higher frequencies.

Satellite-observed brightness temperatures (Tb’s) and Tb-derived quantities such as 
MPDI are dependent upon emissivity.  Here, simple linear relationships are explored.
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Method 1: Semi-empirical model  (Ringerud et al. 2015)

Method 3: Regression (Tian et al. 2015)

Inter-comparison of methods (Tian et al., 2015)

CONTACT 
INFORMATION

ken.harrison@nasa.gov 

Poster #207

• The land surface emissivity 
is highly variable, reflecting 
the pronounced dynamics in 
soil moisture and vegetation 

• Here, three alternative methods for 
capturing the land surface 
emissivity dynamics over the SGP 
are compared 

• Over-land, the land surface 
emission needs to be accurately 
estimated as it obscures the 
precipitation signal 
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Overview:  Assess various approaches to the modeling and prediction of emissivity

Spatial domain:  the "SGP" site -- a 0.25-deg, 20x20 grid: (-99.875, 
-95.125)x(34.125, 38.875).

Temporal domain:  1JAN2009-31DEC2010.

Reference data:  CSU AMSR-E emissivity retrievals over SGP (Ringerud et al., 
2014). Here, limited to descending-pass. (No snow/frozen ground 
screening)

Other data:  Each approach free to use other datasets as needed, including CSU's 
emissivity retrievals before the study period, which are available from 
1AUG2002 through 31DEC2008 (e.g., for model calibration, 
regression, etc.)
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Figure 3: Calibration framework

Figure 4: The initially poor match of retrieved (left) and modeled 
(middle) estimates is  greatly improved with calibration (right),  as 
illustrated here following a major storm in the SGP.
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Figure 6. Prediction errors over the SGP for each 
channel from application of the STAT model M4 (10-
channel Tbs and 5-frequency MPDIs) 
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Table 1.  Comparison of model performances for predicting clear-sky emissivity, as measured by spatial mean of the 
room-mean-square-difference (RMSD) between each method’s estimate and the retrieved emissivity, multiplied by 100.

Figure 5: Linear regression framework
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Figure 7:  SGP land cover  

Figure 8:  SGP soils
Figure 2:  Error statistics for (top) the semiphysical model 
and  (bottom)  the  CRTM  LandEM  model  relative  to 
observed  AMSR-E  brightness  temperatures  for  all  SGP 
cloud-free pixel matches during the period 2009-2010

Figure 1: Semi-empirical framework
Method	
  name	
   11V	
   11H	
   19V	
   19H	
   37V	
   37H	
   89V	
   89H	
  
Semi-­‐empirical	
   1.66	
   2.51	
   1.72	
   2.51	
   1.89	
   2.64	
   3.82	
   4.21	
  
Forward	
  model1	
   1.43	
   2.52	
   1.50	
   2.81	
   1.72	
   2.55	
   3.58	
   3.72	
  
Calibrated	
  forward	
  model2,3,4	
   1.25	
   2.04	
   1.37	
   2.45	
   1.83	
   2.22	
   3.63	
   3.74	
  
Regression5	
   0.90	
   0.86	
   1.01	
   1.00	
   1.14	
   1.13	
   1.94	
   2.09	
  

1Noah-CRTM, after bias correction
2Noah-CRTM, after calibration to 2008 warm season  Ringerud (2014) AMSR-E retrievals, and after bias correction  (see Harrison et al., 2015 for details)
3Caveat: calibration of soil-vegetation system only, i.e., snow and frozen-ground overpasses were excluded and therefore cold-season performance not optimized
4Caveat:  calibration  conducted  using  both  ascending  and  descending  retrievals;  therefore  any  biases  (e.g.,  related  to  surface  temperature,  dew,  day/night 
differences) in emissivities will increase descending  pass simulation error
5 15 Tb-based predictors: 10-channel Tbs and 5-frequency MPDIs


