Introduction

The recently launched NASA Global Precipitation Measurement Mission (GPM) offers the
opportunity for greatly increased understanding of global rainfall and the hydrologic cycle.
The GPM algorithm team has made improvement in passive microwave remote sensing of
precipitation over land a priority for this mission, and developed a framework allowing for
algorithm advancement for individual land surface types as new techniques are developed. In
contrast to the radiometrically cold ocean surface, land emissivity in the microwave is large
with highly dynamic variability. An accurate understanding of the instantaneous emissivity in
terms of associated surface properties is necessary for a physically based retrieval scheme
over land, along with realistic profiles of frozen and liquid hydrometeors. In an effort to
better simulate land surface microwave emissivity, a combined modeling technique is
developed and tested over the US Southern Great Plains (SGP) area. The resulting emissivities
can then be implemented in calculation of upwelling microwave radiance, and combined with
ancillary datasets to compute brightness temperatures (Tbs) at the top of the atmosphere
(TOA). For calculation of the atmospheric contribution, reflectivity profiles from the Tropical
Rainfall Measurement Mission Precipitation Radar (TRMM-PR) are utilized along with
coincident Tbhs from the TRMM radiometer, and cloud resolving model data from NASA-
Goddard’s MMF model for assigning hydrometeor profiles. Ice profiles are modified to be
consistent with the higher frequency microwave Tbs. The synthesis of these models and
datasets will lead to creation of a Tb database that includes both surface and atmospheric
information physically consistent with the LSM, emissivity model, and atmospheric
information, for use in a Bayesian-type precipitation retrieval scheme utilizing a technique
that can easily be applied to GPM as data becomes available.
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Correlations to observations are
computed using databases created
with the semi-empirical emissivity
model and a climatology. Results
demonstrate surface representation
most important at lower
frequencies and lighter rain rates.
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Conclusions

adjusted in an iterative scheme aimed at increasing agreement in the higher frequency channels. For non-raining pixels, resulting

Semi-Empirical
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limatology

i : o database to an identical one constructed using climatological emissivity values provides information regarding the importance of

TMI Channel
RR <2 mm/hr

4 6 8

dynamic representation of emissivity in such a scheme. Correlations to observed Tb values are increased when simulated using the
dynamic surface, particularly at the lowest TMI frequencies. This improvement is largest for pixels with no rain, and decreases with
rain rate. At a rain rate of 5 mm/hr averaged over the 19 GHz TMI footprint area, the difference in correlation becomes insignificant.

In developing a physical database for Bayesian-type precipitation retrieval schemes over land, accurate representation of the surface
emission is an important and difficult problem. In the work presented here, a simple physical database is constructed in order to
assess sensitivity of such a database to surface emissivity characterization. A semi-empirical emissivity model is implemented for this
purpose, and is used to compute emission from the surface in a forward model for database radiative transfer simulations. The

atmosphere is modeled using background environment information from the ERA-Interim reanalysis along with hydrometeor profiles
derived from constrained matching of CRM profiles with profiles from the active measurements of the TRMM PR. Ice profiles are

agreement between simulated and measured TMI Tbs is good, with correlations around 0.9 and multispectral biases less than 1K. In
raining areas the agreement is somewhat degraded, but still shows correlation with measured Tbs of 0.8-0.9. Comparison of the

o This comparison suggests that dynamic representation of surface emissivity in simulations for precipitation database construction will

and at higher frequencies that have less sensitivity to the surface.

TMI Channel
RR > 5 mm/hr

which could be targeted in future work.

TMI Channel

= It appears clear that with optimization, it is possible to develop a database with precipitation signals that can be accurately
distinguished from surface emission over land, and that such a database could be implemented in to a Bayesian retrieval framework.
While the present study demonstrates the feasibility of physical retrieval, clear biases are present along with other problem areas,

have the most significant impact in areas of light or no rain, with emissivity accuracy becoming less important in areas of heavier rain



