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Introduction The African and Latin American/Caribbean Flood and Drought Monitors (AFDM, LACFDM)

Climate services are key to improving resilience in regions that are susceptible to
natural hydrometeorological hazards and suffer from lack of capacity to manage
climate related resources and impacts. The Global Precipitation Measurement
mission (GPM) is critical to the provision of climate services especially in
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Precipitation Index and NDVI. By combining an analysis of all of these
components, we are able to use the AWCM to identify historical events and to
provide an early warning of events in the near future.

Top: LACFDM prediction of the March 2015 flood in Copiapd, northern
Chile. Each panel represents the streamflow forecast (red line) at
different lead-time versus the observation driven simulation (black line),
from 9 days before the event to 2 days after the event.

Top-right: Observed 3-month Standardized Precipitation Index (SPI-3)

Multiple variables are also calculated at each grid cell over the continent using
the land surface model for display and to be retrieved as time series. In addition

to this, 7-day forecasts are created for most variables using GFS, as well as 6- iy TN\ during the 2012 African drought versus forecasts from NMME models. ; :"‘)‘
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