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Incoming precipitating systems Table 1 - Rainfall detection matrix for GPM-DPR Ku Band — NS (Ka-Band — HS) compared to RG observations for different time-scale.
Accuracy : (YY + NN) / total; frequency bias: FB = (YY + YN) / (YY + NY ); probability of detection: POD =YY /(YY + NY ); false alarm
ratio: FAR = YN/ (YY + Y N). Note: YY -number of hits, NN - correct rejections, YN - false alarms and NY - missed detections.
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