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Community Active Sensor Module (CASM) One year of GPM DPR level 2A (V6) data was downloaded and processed. Following the previous
CASM Capabilities: (a) DPR SRT-Derived D, [mm] (b) DPR SRT-Derived N, [db mm™ m-3] approach, the N, D, temperature, and reflectivity information was obtained from each DPR file -- only
(1) Simulation of multi-frequency radar reflectivities the nadir beam was selected. Processing these variables using CASM, the figure below shows CFADs of
and path-integrated attenuation 2D slice at nadir, Mean Volume Diameter (Dm){mm] @ Ku [NS] 2_D slice at nadir, Intercept Param. (Nw) [dB mnt™' m3] @ Ku [NS] attenuation-corrected reflectivity (Zc) for GPM DPR observed Ku- and Ka-band reflectivities in panels (a)
(2)  Simulation of coincident passive microwave TBs 10 | . . . . . 10 . . . . . . 40 and (b), respectively; and for the CASM simulations at Ku- and Ka-band in panels (c) and (d), respectively.
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tested yet) sy ] 15 8t - Altitudes were normalized to be height above the land surface. Range bin height was estimated using
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(3) Enhance data assimilation capabilities by I' I ' 1I L DPR (top) and CASM (bottom) CFADs 01 Jan 2015 - 31 Dec. 2015
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Attenuation-corrected radar reflectivities at Ku band: (a) is the CASM simulation at Ku-band, (b) is DPR corrected reflectivities at Ku-band. (c) and (d) are the same as (a) and (b), except CFADs of GPM DPR observations (top row) and CASM S|mul-at|ons-(bottom row) for Ku band and Ka band
e ) : _— (beam matched). One year of data was used for the analysis, nadir beam only, from 01 January 2015 to 31
at Ka-band. Note the significant attenuation corrections at Ka-band, compared with Fig. 7c. and 7d. 5 ber 2015
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