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The Maediterranean is a unique meteorological environment and a weather forecasting In this study the GPM-CO observations of a violent hailstorm, that developed over the
challenge, and is recognized as one of the major climate hot-spots in the world. Because of the Tyrrhenian Sea and hit the Gulf and the city of Naples in Italy on 5 September 2015 (hereinafter
complex orography of the Mediterranean coastal regions and of the need to improve the referred to as the Naples hailstorm) are thoroughly analysed and discussed, in conjunction with
monitoring and forecasting of severe weather in terms of time, location, and strength other satellite and ground-based measurements. We illustrate the unprecedented capabilities of
(Panegrossi et al. 2016), conventional ground-based instruments (e.g., raingauges and weather the GPM-CO satellite for characterizing the structure of this exceptionally severe storm. We
radar networks) are often inadequate to provide observational details of severe weather on the show that the combined use of measurements from GMI and DPR with those available from
whole region. For these reasons, the use of satellite measurements is a unique opportunity to other sensors provides observational evidence of extremely rare features of the Naples
study severe events over the sea and large part of the coastal regions. hailstorm, while demonstrating the potential of GPM-CO to enhance the understanding of these around 09:00 UTC (left panel). Baseball-size hailstones (right panel). Photographs extracted from the videos

severe .C(?nV(.-:'ctive systems by providing unique spaceborne measurements of the 3-D structure available at http://www.youreporter.it/video _Eccezionale _tempesta_di_grandine_nel _golfo_di_Napoli
of precipitation. (courtesy of Rosario Chiocca) and at https://www.youtube.com/watch?v=yarARzbkjl4.

The purpose of this work is to show that the use of advanced
cross cutting observational tools, combining data from
different platforms, is essential for the characterization of
such severe and rapidly evolving convective systems, which
periodically devastate the Mediterranean coastal regions,

MSG, lightning, and ground-radar

MSG SEVIRI IR and VIS images;
LINET lightning ground-based network data;
Ground-based C-band polarimetric radar at Monte il Monte (41.94°N, 14.62°E, 710m ASL),

and to document how the GPM integrates the established
observational ground-based and satellite-borne tools in
monitoring, understanding, and characterizing severe
weather.

130 km away from the storm.

GPM constellation: GPM-CO and MHS

GPM-CO (GMI and DPR) overpass at 8:47 UTC;
MetOp-A and MetOp-B (AMSU/MHS) overpasses (8:34 UTC and 9:28 UTC respectively);

Figure 1: Hailstone bombing observed by a boat 2 km off the coast, north of Procida Island (40.78°N, 14.02°E)

[ Analysis and Discussion }
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Temporal evolution of the storm as inferred by MSG IR, lightning and ground radar observations GPM observations of the hailstorm mature stage Fig. 6: GMI orbit 8630 on 5 September
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supercell followed by secondary cells. The supercell structure is clearly revealed by the presence of cloud top plumes observed by MSG SEVIRI (Fig. 2) and of a strong hook-echo in the C-band The available measurements from the GPM constellation of radiometers (especially GN_” and In particular, the fact that tf.\e. convective core of the storm ShOW_S a deep GMI'TB depre§5|on Ko s, KuNS oy 15-KaMS ay3 Left panel: TB in the 166 GHz H-
polarimetric ground radar (GR) measurements (Fig. 5). MSG SEVIRI analysis shows cooling rate of the updraft top around 1 K min'! at the beginning, reaching its maximum of 4.5 K min'* around DPR onboard GPM-CO (Fig. 6)_' but alsc? by the MHS onboard MetOp-A and MetOp-B (F'g_' 9)) at 13 Ghz and that the minimum TBs at 166 GHz are 20 K h!gher than at 89 GHz is an “n 250 43 N “ polarization channel, with the width of
06:07 UTC. The peak updraft speed is estimated compatible with 8-10 cm sized hailstones at the ground. The coldest cloud-top IR brightness temperature was 197.9 K at 07:22 UTC. integrate the other obser.vatlons available, and help overcoming many of the I|.m|tat|ons |nd|.cat|on of the presence of large, high-density ice particles at different levels of the updraft . Ku and Ka swaths superimposed (green
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reported at the surface (Fig.4) o 2 X Lo X DPR measurements (Fig. 10) provide further support to the GMI analyses and findings, while
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Lightning activity and GMI/DPR observations
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-~ | 4941 (cross-section C) are shown in i | j i s Il W, g0 o levels .~ Inthisregard, it is worth noting that operational and research Numerical Weather Prediction (NPW) models completely missed the forecast of this storm, thus fostering deeper research to increase knowledge of these events which
O i s DN T Tar T T I S ST ’ ji = o | Ly often severely impact ground structures and human activities. The extremely rapid development over the sea (with no orographic forcing) of such localized and intense convective systems, together with the fact that often the local
- - ot R oot o o) == |, forcingis not represented in the data used as initial conditions in an operational setting, poses great challenges to a correct simulation of the dynamical and microphysical processes leading to their development. Nevertheless, we
2 i~ i 1., leave to future and dedicated studies the investigation of the mechanisms that have lead to the development and evolution of such exceptional hailstorm, as well as the quantitative retrieval of the storm microphysical structure
Event characterization at global scale AR - ‘ r using the GPM-CO GMI and DPR measurements (accounting for attenuation correction and multiple scattering). We anticipate that to this end, it will be necessary to combine cloud-resolving model and radiative transfer
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GPM measurements are useful to classify the severity of the Naples storm at global scale. The storm was exceptionally intense since it was characterized by the deepest 19V GHz TB depression N e e ms e e @ . . | o o o . . | o |
(158 K) over a 26-months period of GMI global observation, and since it shared extremely low TBs (and PCTs) records at 23 and 37 GHz with only two storms in the CONUS, and also with SP1 o Brightness Temperatures. awserw Finally, this observational study indicates that the quantitative exploitation of the unprecedented tools available from GPM should be oriented not only to the retrieval of precipitation rates, but also to the understanding of cloud
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tropical storms at higher frequencies. MetOp-A and MetOp-B MHS measurements confirm these findings because of the extremely low TBs (Table 2) as compared to a 12-year MHS hailstorm L e o o (globally) e Soomn structure and dynamics c?f extreme events which perlodlc?ally devas.tate the Medlt.erranean coastal regions; moreover, the use of GPM data woulq help assessing climate change s!gnatures in the Mediterranean area, where such
climatology over the U.S. (Ferraro et al., 2015), which are compatible with hailstone size larger than 7.5 cm. b i lovt, stanture rovealed by 166 GHz V-H signal _ updrafistengtn oo e severe events are becoming more and more frequent, while the available observation networks based only on raingauge and weather radar are unlikely to provide measurements with the needed space cover, detail and accuracy.
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