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Abstract Statistics of Observed BT Minus Simulated BT for Single Case Statistics of Observed BT Minus Simulated BT for All SWC Profiles
This study utilizes a coincident dataset of the CloudSat Cloud Profiling Radar (CPR) and the Global Precipitation
Measurement (GPM) Microwave Imager (GMI) to retrieve snow water content (SWC) profiles from GMI high frequency 3 ATb >1 K ATb <1K
channels over ocean. The initial guess of SWC is converted from collocated CPR radar reflectivities using Ze-S relation
and scattering database of non-spherical snowflakes. A 1D-VAR optimization is then applied to minimize the predefined ol o 5] 3]
cost function in a radiative transfer model. A single case is first examined. GMI seems to offset the missing part of CPR | & & :
derived SWC profile due to strong attenuation at 94 GHz. This method is performed on all qualified SWC profiles over . ] - - R
two years to develop a database for Bayesian retrieval. The retrieval test on two selected cases implies that this database . a- ] _ é
can be used to retrieve snowfall information given brightness temperatures (BT) for GMI high frequency channels. The X ]
method in this study is also easily employed on other microwave imagers. @ g 17 17
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Data Description and Model Setting D - .
The coincident dataset combines CloudSat CPR radar reflectivities, GPM GMI BT measurements and ECMWF auxiliary ]
dataset for CPR. Only five channels from GMI are utilized (89V GHz, 166V GHz, 166H GHz, 183.31+1V GHz, and = 5 ] .
183.31+7V GHz). Liquid water path in GMI level-2b product is also used to derive cloud liquid water (CLW). |
Model simulations of BT for GMI high frequency channels are calculated by a radiative transfer model using a discrete = ] ]
ordinate method (Liu, 1998). This radiate transfer model calculates the single scattering properties of non-spherical SOV 66V 66T (833143V 1833147V 7 | | | | | 7 | | | . .
snowflakes using a parameterization based on the discrete dipole approximation (DDA) (Liu, 2008). Two particle size 10 0 8OV 166V 166H 1833183V 183.31%7V 0 8OV 166V 166H 1833183V 183.3147V
distributions are employed in the radiative transfer model (Braham, 1990; Rutledge and Hobbs, 1983). ] B OB 1 1 B O—B:i:”
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Atn™ iteration, Rogers (1976) gives the solution: Channel frequency (GHz) Fig. 5. Biases (top panel) and standard deviations (bottom panel) of observed BT (O) minus simulated BT (B) for GMI high frequency
Xnsg =Xo T BHE (HnBHE +R) " [y—H (X,)—H, (X, —=X,)]  H,: Jacobian matrix of observation operator Fig. 2. Biases (top panel) and standard deviations (bottom panel) of observed BT (O) minus simulated BT (B) for GMI channels.
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Bayesian Retrieval Test
Flowchart of 1D-VAR Retrieval Contoured Frequency by Altitude Diagrams of All SWC Profiles
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Fig. 3. Contoured frequency by altitude diagrams of all analyzed SWC profiles using Braham PSD (top panel) and R&H 3 ; E’ 3]
' PSD (bottom panel). £ 3 £ 2
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X 5 Zg 39V GHz ZS 166V GHz ' ZE 239V GHz ZE 166Y GH> Fig. 6._ Ver_tlcal distributions of snow water content from CPR background (top panel), analysis using Braham PSD (middle panel), and
§ 4 @ 250 - 250 - 250 - 550 - e analysis using R&H PSD (bottom panel) for two selected cases.
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Fig. 1. Vertical distributions of snow water content from CPR background (top panel), analysis using Braham PSD , , , - - T . . o e
J o \CH (top panel) 4 J Fig. 4. Relation between observed BT (O) and simulated BT (B) for GMI high frequency channels. Shading represents Rutledge, S. A., and P. V. Hobbs, 1983: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude
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