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Gntext

Characterization of satellite surface precipitation estimates and bridging Level-2 GPM core, constellation and combined Level-3 estimates.
Needed in water cycle and extreme events studies, weather and climate prediction; over land in flood prediction and water resources.

Objectives

. use the NOAA/NSSL Multi-Radar/Multi-Sensor System (MRMS) system to provide a consistent reference research framework for creating
conterminous US (CONUS)-wide comparison benchmark of precipitation retrievals across GPM core and constellation satellites.

. cross-platform characterization acts as a bridge to intercalibrate active and passive microwave measurements from the GPM core satellite to
the constellation satellites, and propagate to Level-3 precipitation products.

Space sensors
QMM-PR/TMI, GPM-DPR/GMI, SSMIS, AMSR-2, DMSP-SSM/I, MHS, ATMS
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Background: MRMS
MRMS provides 3D reflectivity mosaics
and QPE products over CONUS at 1-km?/2-
min resolution

Real-time platform to develop,
1 test, and assess advanced
techniques in quality control,
data integration and
precipitation estimation.
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across GPM sensors and the gridded Level-3 products
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Reference precipitation

Establish a trustworthy reference
precipitation database in real-time /7 _
04/11 2011 07:25 AM %0

- gauge adjustment
- quality/quantity controls
ipitation types
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- used in GPROF at launch algorithm
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sample: 500 000°

Brigding between sensors and products

« algorithm development & validation
purposes (DPR & GMI)

- between active and passive sensors, e.g. GPM-DPR vs. GPROF-GMI
-> between algorithms versions e.g. GPROF-GMI V04 vs. GPROF-GMI V05

* active/passive/combined level-2 and
level-3 precipitation products
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Satellite-based quantitative precipitation estimation (QPE) requires more
Di i ysis: inter within the DPR footprint l scale |impact than just one deterministic “best estimate” to adequately cope with the
bright band stratiform convective v intermittent, highly skewed precipitation distribution. A new approach
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U L / is / deterministic QPE by mitigating biases like PERSIANN-CCS used in
§5 is §5 B IMERG. PIRSO quantifies uncertainty needed for precipitation ensembles
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Storm system at 12:30 UTC on 18 April 2016 near Houston

Evaluation over the period June 2014 — Sept. 2016

Qasti: +0.05 % 0.60 -15% 0.46 +3.5% 0.53/
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GMI correlation vs Reference Precipitation
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(an i ] 3 Relevance and Broader Impact :
brightband  stratiform convective \ + development & evaluation GPM retrieval algorithms
-- -- -- 3 r'\ - » propagation of uncertainties in Level 3 precipitation
DPR +5.5% 0.44 -19.5% 0.36 -15.5% 0.30 i

Any question or comment? Please contact me at:
Pierre.Kirstetter@noaa.gov




