Effects of Interactive Cloud Radiation on the Development of Tropical Convection
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Impacts of cloud radiation feedback (CRF) on organization of tropical convection, and large-scale circulation on climatic time scales are examined by 608 mzﬁ—ﬁﬁ s o ;E o ,;E
conducting two sets of 10-year simulations using the Goddard MMF (GMMEF), with (Control) and without CRF (NoCRF) with prescribed SST from 9057 o T TR ] W ST T 5 T — // - el | -
2007-2016. Changes in clouds, precipitation and circulation, heating due to moist physics, shortwave and longwave radiation, and dynamical tendency R — e s - e -
are examined based on the differences between Control and NoCRF experiments. Preliminary results show that: (b) StormTrack (v500) Zonal Mean (6) Total ] (e (o () Precipitation i
B CRF improves the simulation mean precipitation distribution, reducing excessive equatorial precipitation in GMMC. - w
N . " . - - . T
B CRF warm mid- to upper-tropospheric temperature, shifts deep convection to the warmer hemisphere (NH), increases equator-to-pole temperature oo o wa @
gradient, and enhances mid-latitude storm tracks. E = = - £ 3
B Both SW and LW contribute to warming of the tropical troposphere, while LW cooling dominates in the subtropics and extratropics above clouds. £ o . £ 02 = Control
W Anomalous heating by deep convection in the tropics is strongly balanced by dynamics (adiabatic cooling) in the tropics, while anomalous LW cooling s AT —— s 10 T NecRe
in the extratropics balances the heating due to increased poleward heat transport by the enhanced extratropical storm track. TitEemamletiobs b 05 1S A
W In the tropics the overall effect of CRF is to enhance heating by SW and LW in regions of heavy precipitation, and increase LW cooling in drier, | o o e e
Ozl Csv eo CHll Gy 0. 5 D GELEDIERUTS 17 ERILIS AV DIECIDLALIDIL CISa:sL Cemi SLECSE s Figure 8. Simulated differences in (a) relative humidity, (b) temperature,
cloudy regions, increasing the heat contrast between wet and dry regions. [ 3 T70E 180 200 5w [ T 20 30 40 % K (c) cloud ice, (d) cloud liquid mixing ratio, (e) total cloud watr and ice,
== ooroToo and (f) precipitation.
Roles of CRF in affecting organization of tropical convection on intraseasonal time scales will be explored.




