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An important goal of the GPM DPR is to derive rain rate by estimating parameters . e P ..
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on the method that uses the difference of radar reflectivities between two From Look-up tables R = N, Iz (D,,, 1) (2) As DSD is parameterized as sdmma distribution W'Fh Its chara.cterlstlc o £ o
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dual-wavelength retrieval for the GPM mission, a few optimal methods have R from DPR-like (R-D, ), mm/h R from modified DFR (y=0.7), mm/h R from standard DFR, mm/h
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to account for DSD variation in space and time. Adjustment factors at each gate/ Substituting (3) into above equation, we obtain computed from Pasivel DSD data, is shown in Fig.2. - c ol c ol ¥

profile are determined by optimizing predefined cost functions that tend to satisfy APU E E E .
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retrieval problems are often under-constrained, none of these retrieval methods are obtained from Eq.(1) and (3), respectively. From derived DSD parameters Z(}) and Although the standard dual-A method ‘ | A from DPRAKS (RLD. ), mmh i Wioaiiae DR =075 ik Eyiror stindard DER. i

are perfect. Their accuracies depend on several factors that include DSD k(A) are then computed. is in principle fully accounts for spatial € Fig.4 PDF of comparisons of rain rate between DSD derived (true) and radar retrieved results at storm

parameterization, vertical homogeneity of DSD profiles and accuracy of the PIA . .. E o S top and surface as non-uniformly vertical rain profiles are simulated (as shown in the middle panels of
and temporal DSD variations and it is _ A CT Fig.1). The DPR-like (left), modified DFR (middle) and standard DFR (right) are included in these

estimates as well as the nominal radar-hydrometeor relations used for retrieval. A . o _
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on the plots under an assumption of gamma DSD model with a fixed p of 3 as N, is taken at several

Fig.1 Examples of vertical DSD profiles (left and middle) and spatial correlation relative to surface rain (right). values. Contours of Ku-band reflectivities are also plotted. achieving better accuracy and less uncertainties.




