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1. Motivation and Objective

Motivation

Spatial variability within GPM-DPR footprint in both horizontal and vertical

direction causes Non-Uniform Beam Filling (NUBF) that is one of the key

uncertainties in interpretation of DPR. Vertically pointing radars are useful to:

1) investigate the vertical variability of raindrop size distribution (DSD) and of
bulk descriptors of rainfall.

2) fill the gap between the ground level and the first available elevation of

Ground
weather
radar

disdrometer and MRR

=

scanning radar.

Research Objectives
1. Evaluate the agreement among DSD and integral rain parameters estimated by:
« disdrometers (namely 2-D video disdrometer, 2DVD, and Autonomous OTT Parsivel2 Unit, APU)
« vertically pointing radar (Micro rain radar, MRR)
« S-Band Dual Polarimetric Doppler Radar scanning radar (NPOL)
2. Investigate the vertical variability of DSD and integral rainfall parameters within 1085 m above the ground in
convective and stratiform rain by means of 35-m vertical resolution MRR vertical profiles.
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2. IFloodS DSD datasets '2

GPM DPR algorithms assume
the normalized gamma

Is the mass-weighted raindrop diameter;
is normalized intercept parameter
IS the shape parameter (kept constant).

distribution defined as

IFloodS NPOL scanning and MRR positions along 130.0° radial

NPOL beam at
1.4° elevation
angle

The lowa Flood Studies
(IFloodS) Field Experiment
was conducted in Eastern
lowa from May 1 to June
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15, 2013. DSDs were 0.5- L
collected by:
I) 6 2DVDS ground dlstance (Jam)
ii) 14 APUs latitude Longitude | Distance from NPOL 1.4°
iii) 4 MRRs (deg) (deg) NPOL (km) bean;r::)eight
MRRs were co-located
i Slte 1 42.239 -92.464 4.98
with one 2DVD and one m
APU Gate Spacing was 42.126 -92.282 24.5 640
' m 41.861 -91.874 69.2 1971

~Burington

set to 35m to sample
precipitation from 105m to
~1 km height. All sites were
within NPOL coverage.

Volume sampling issues: NPOL sample volumes at the three surface sites are 103 -10°
times larger than the sampling volumes of MRR (from 372 m3 @105m to ~ 40,000 m3 at
its higher gate) and 2DVD (~4 m?3). NPOL 1.4° elevation was chosen because free from
clutter/blocking effect at all the three sites.

# of rainy R (mm h1) R (mm h) R (mm h1)
minutes 2DVD APU MRR@105m
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3.

A quality check of disdrometer data was performed by comparing measurements using the following statistics

2 XY 2N e s 22X 2% Yl
X, SX, 0 TN N

where X:is a measurement of the reference device and Y, is the corresponding one of the other device.
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2DVD is the reference for the co-located ol
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» The bias for Z is less than 1 dB for sites 1 £ |
and 2 and negative, indicating that the
APU slightly overestimates the reflectivity J

factor with respect to the 2DVD. The 20 | 2-0 )
opposite is valid for site 3.
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» The comparison between the 6" moment

of the DSD (i.e. the reflectivity factor under
scattering assumption)
bl ] obtained is good for Site 1 and 3.
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Raindrop Size Distributions
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D.

A three-parameter exponential function is adopted :

d\™
r(d)—roexp[ (d()) ] -

» The Pearson correlation coefficient r is calculated between the paired MRR observations at distance d (i.e.
the measurement obtained by MRR at a certain height is compared with the measurement at each MRR Dbin
above the given one). Minimum distance is 35 m, maximum is 945 m.

» Considering all the possible combinations, in total for each site we obtain 378 pairs of MRR observations.

» d, and s, are calculated by a fitting procedure minimizing the root-mean square error between the observation
and equation based correlations

» two different conditions are considered: Convective and Stratiform rain. The C/S algorithm of Thurai et al.
(2010) has been applied to MRR@105m to classify the rainy minutes.

Vertical Variability from MRR data

[, 1S the nugget parameter (set to 0.99), s, is the shape parameter, d, is the correlation
distance, and d is the distance between paired of MRR observations .

1. Computation of the correlation coefficients

Stratiform rain (Site 1: 90.4% (#4253); Site 2: 96.8% (#5907); Site 3: 95.8% (#6969))
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Convective rain (Site 1: 9.6% (#452); Site 2: 3.2% (#193); Site 3: 4.2% (#303))

convective rain
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» The correlations of all the considered parameters during stratiform rain are higher than during convective rain.
» The range of variability of the correlations for a given distance is wider for convective rain that for stratiform rain.
» In most of the cases, the exponential fit of the correlations in the three sites are in very good agreement.

» The correlation values during convectton decrease dramatically with d, reaching negative values in some cases.

2. Fitting results
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» RMSE (Root Mean Square Error) represents the goodness of the fitting, smaller is the values and higher is the
performance of the fitting.

» d, Is the correlation distance that represents the maximum distance within the given variable can be considered
statistically uniform.

» As expected, for a given variable the correlation distance during convective rain is smaller that during stratiform
rain, indicating an higher spatial variability of the considered parameters along the vertical during convection. The
decrease is particularly evident for the reflectivity factor.

» The highest correlation distances have been obtained for Z (in dB) during stratiform rain (values around 3 km)
while the lowest one have been obtained for R during both convective (values around 0.3 km) and stratiform rain
(values around 0.5 km).

» As far as the authors have been able to ascertain, the three-parameter exponential function has been applied for
the first time in this study to investigate the vertical variability of a number of DSD and rain parameters obtained
from MRR DSDs each 1 minute at different heights. Therefore, there is no direct comparison available for these
parameters of exponential function with any other previous studies.
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