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A Very Basic Question

At what spatial scale can we “trust” the
GPM products?




Motivation: Basic questions

1. What is the “finest scale at which retrievals accurately reproduce the

local spatial variability of a reference product?” (= Effective
Resolution: ER)

2. What is the ER of the current GPROF-2017 retrievals?
-- How 1s 1t spatially distributed over land, oceans, snow-covered areas,
storm regimes, etc.?
-- Are there unexpected results and why?
-- How can ER serve as diagnostic tool to improve retrieval algorithms?




Effective Resolution: far from trivial

The grid size is often referred as the “resolution” of the product, BUT in
fact it does not ensure the ability to resolve precipitation patterns at the
corresponding scale.

ER is a result not only of the nominal resolution of the
instrument, but also of the information content of each
MW channel and the ability of the retrieval algorithm
to accurately interpret this information to reproduce
the precipitation variability and structure at fine scale




Effective Resolution (ER): how to compute?

1) Object-based methods

-- use thresholds to define “objects”

-- compare object attributes: size, convexity, compactness, etc.
-- must repeat for several thresholds

-- computationally expensive and hard to interpret

2) Spatial multi-scale decomposition via wavelets
-- A wavelet is a differential filter: WCs= local gradients
-- Discrete Orthogonal Wavelet
* FErases spatial correlation of analyzed signal
* Removes possible non-stationarities
* Characterizes each scale in a non-redundant way
* Reconstructive basis: all info about original signal kept in WCs
* Var(WCs)= Wavelet spectrum= how energy is distributed across scales
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Determining ER: Basic 1D example

KuPR precipitation field
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Determining ER: Basic 1D example
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Determining ER: Basic 1D example

£ o] | | ‘
o
u Discrete Orthogonal Wavelet Transform
o 2 scale 1 (5km)
= o I
- —1,«-......_;{“1\,_.1,_.., A~ +
ll;) 1 | T r
[ N P .
0w ” A e
= = scale 2 (10km)
o =] e
- scale 6 (160km
g i T T —‘I— T ( T ) T T T
0 500 1000 1500 2000 2500 3000 3500

x(km)

.Q“\‘\ UC! Sla‘mL'Jve‘h

!;



Determining ER: Basic 1D example
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Determining ER: Basic 1D example
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Determining ER: Basic 1D example
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Determining ER: Basic 1D example
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Determining ER: Basic 1D example
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Determining ER: Basic 1D example
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Determining ER: 2D

* In two dimensions the principle remains the same.
* Three series of wavelet coefficients are extracted at each scale (3 directions)
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Determining ER: 2D

* In two dimensions the principle remains the same.
* Three series of wavelet coefficients are extracted at each scale (3 directions)

R = 21 BDE
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Determining ER: 2D

* In two dimensions the principle remains the same.
* Three series of wavelet coefficients are extracted at each scale (3 directions)
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Determining ER: 2D

* In two dimensions the principle remains the same.
* Three series of wavelet coefficients are extracted at each scale (3 directions)

(Kumar and EFG, Rev. Geophys., 1997)
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Comparing Retrievals to a Reference Field

2D spectrum of the Reference field

e.g., average spectrum from one year of radar
(MRMS) observations over South-Eastern US
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Comparing Retrievals to a Reference Field
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Comparing Retrievals to a Reference Field
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Comparing Retrievals to a Reference Field
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Comparing Retrievals to a Reference Field
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Comparing Retrievals to a Reference Field
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Comparing Retrievals to a Reference Field

Large error at small scales Poor local correlation at small scales
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Defining Effective Resolution (ER)

Select a criterion to determine which scales are well retrieved (ER)
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Defining Effective Resolution (ER)

Select a criterion to determine which scales are well retrieved (ER)
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Global evaluation of GPROF-2017

* Three years of GMI retrieved precipitation globally analyzed against KuPR:

. 4 )

< | S KuPR
o -
—_ L
over % . S,
oceans &g ~ ol
] -___,.,_,-Pﬂ = i@
o |¢-——e—""  GPROF
SHEs I I I I
5 10 20 40 80

scale(km)

S
_a UCI Samueli



Global evaluation of GPROF-2017

* Three years of GMI retrieved precipitation globally analyzed against KuPR:
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Global evaluation of GPROF-2017

* Three years of GMI retrieved precipitation globally analyzed against KuPR:
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Global evaluation of GPROF-2017

* Three years of GMI retrieved precipitation globally analyzed against KuPR:

over
ocecans

over
land

var(WWC)
04

0.2

var(YVC)
04 0.0

0.2

0.0

3§\
N KuPR
AR N
o
\b\\\
Error o  4°~
~ S~ 0
GPROF e i
‘__._———"0 [+ RS o
1 | T | 1
5 10 20 40 80
N
\
« KuPR
\Q
8.
Error T
et -
O ™
GPROF - g--
@ ————— © * %8
| | | I a
5 10 20 40 80
scale(km)

correlation

correlation

0.8

04

0.0

0.8

04

0.0

- er. T ®
~07
et ER= 10-20Km
Lo~ cor(Ry., . Ruw’)
o
[ [ [ [ [
5 10 20 40 80
- 4
- ER= 40-80Km
L0 -
o~ -7 Cor(RKu’IRMW')
o’
[ [ [ [ [
5 10 20 40 80

scale Q(Ig‘n)

[~



Global evaluation of GPROF-2017

* Global map of the effective resolution of GPROF-GMI vs KuPR
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Global evaluation of GPROF-2017

* Global map of the effective resolution of GPROF-GMI vs KuPR
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-Homogeneous results over oceans => Except for the southern ocean (seaice-:
-Lower ER over land, much heterogeneity. ER>80km: Himalayas (mountains), South-East Asia, Coasts above 50° N.
-The retrieval seems to be performing as well in extra-tropical regions as in tropical regions.

-20~40km ER over land even in regions where deep convection is not dominant (e.g. Eurogg:Sib uci samueli




Global evaluation of GPROF-2017

GPM era (2014-2017):
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ER is a rigorous & robust framework

DIAGNOSTICS!




Evaluating the reference: KuPR vs MRMS

* One year of collocated KuPR and MRMS (gauge-adjusted radar) observations over

Eastern US
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Evaluating the reference: KuPR vs MRMS

* One year of collocated KuPR and MRMS (gauge-adjusted radar) observations over

Eastern US
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Evaluating the reference: KuPR vs MRMS

* One year of collocated KuPR and MRMS (gauge-adjusted radar) observations over

Eastern US
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Take away messages

1) GPM era (GMI, GPROF-2017) vs TRMM era (TMI, GPROF-2010):

* Over oceans: ER is improved from 20~40km to 10~20km. Both GPROF-2010 and
GPROF-2017 are smooth estimates.

* Over land: GPROF-2017 and GPROF-2010 have similar ER: 20~80km with large
variability depending on geographical areas. GPROF-2017 (Bayesian retrieval) is
smoother than GPROF-2010, leading to lower MSE.

* GPROF-2017 performs as well in tropical and extra-tropical areas, except for
southern ocean (because of sea ice?).

2) Lower ER over land is surprising considering that the HF channels (>80GHz), which
provide most of the information over land, have the best resolution.

=> [nstrumental resolution does not seem to be the main driver of the ER.



Information content of different channels

Lower ER over land is surprising considering that the HF channels (>80GHz), which
provide most of the information over land, have the best resolution.

=> [nstrumental resolution does not seem to be the main driver of the ER.



Diagnostics => New Perspectives

Objective: achieve over land the same ER as over oceans.

1) Retrieval over land relies mostly on HF channels. HF channels are sensitive to
clouds’ ice content:

* QU: How well do we retrieve cloud ice over land with GMI? =>
compare TB 89GHz to DPR reflectivity above the bright band.

* QU: Down to which scale can cloud ice content predict surface precipitation? =>
compare DPR reflectivity above the bright band to surface precipitation.

* QU: How much does geometry —spatial/temporal mismatch between clouds and
surface precipitation, parallax shift ... — limit the retrieval of fine scale patterns?

2) QU: How to better exploit the LF emission signal over land?
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Information Content of Various GMI channels
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Despite their coarser resolution, the LF channels of GMI (19H and V), which are sensitive
to raindrop emission signal, contain more information about surface fine-scale precipitation
variability than the better resolved HF channels (89 V, H) over land
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Global evaluation of GPROF-2017

* Correlation of the LP components (scales>80km): GPROF-GMI vs KuPR
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For more details pls see our paper in J. Hydrometeorology
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WAVELET ANALYSIS FOR

GEOPHYSICAL APPLICATIONS

Praveen Kumar

Hydrosystems Laboratory
Department of Civil Engineering
University of Illinois, Urbana

Abstract. Wavelet transforms originated in geophysics
in the early 1980s for the analysis of seismic signals.
Since then, significant mathematical advances in wavelet
theory have enabled a suite of applications in diverse
fields. In geophysics the power of wavelets for analysis of
nonstationary processes that contain multiscale features,
detection of singularities, analysis of transient phenom-
ena, fractal and multifractal processes, and signal com-
pression is now being exploited for the study of several
processes including space-time precipitation, remotely

Reviews of Geophysics, 35 (4), November 1997

Efi Foufoula-Georgiou
St. Anthony Falls Laboratory
Department of Civil Engineering
University of Minnesota at Minneapolis-St. Paul

sensed hydrologic fluxes, atmospheric turbulence, can-
opy cover, land surface topography, seafloor bathymetry,
and ocean wind waves. It is anticipated that in the near
future, significant further advances in understanding and
modeling geophysical processes will result from the use
of wavelet analysis. In this paper we review the basic
properties of wavelets that make them such an attractive
and powerful tool for geophysical applications. We dis-
cuss continuous, discrete, orthogonal wavelets and wavelet
packets and present applications to geophysical processes.
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Global evaluation of GPROF-2017

Effective resolution
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-Homogeneous results over oceans ER=10-20 Km => Except for the southern ocean (sea ice?)

-Lower ER over land, much heterogeneity.

-ER>80km: Himalayas (mountains), South-East Asia, Coasts above 50° N.

-The retrieval seems to be performing as well in extra-tropical regions as in tropical regions.

-20~40km ER over land even in regions where deep convection is not dominant (e.g. Europe, Siberia ...)

>> Looking at the maps at all scales of the var(MW’), Var(KuPR’), correlation plots provides more insight
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