COLORADO STATE Combining Advanced DWR and Surface Observations and Bin Microphysical Modeling to Enhance Frozen Phase Precipitation Process Understanding
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Next Steps

* Initial development of SR(Z,DWR) algorithm || * Add cases from other field campaigns,
using GCPEx data (2DVD, D3R, Pluvio) e.g. ICE-POP
* HB method 1s least biased for DWR * Use the improved SR and accumulation

simulation and subsequent accumulation data 1n model-observation Comparis()ns
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for lake effect
*POSS and 2DVD fall speeds also indicate 9999 fpm 2012 01 30 23 55 p.1 -

a similar pattern f %‘ ? T

3491 fpm 2012 01 30 08 54 p.1 5

3421 fpm 2012 01 30 08 0 p. ﬁ‘.‘...—‘ <
AW L =

9999 fpm 2012 01 31 02 17 p.2

3421 fpm 2012 01 30 08 0 p.2 ‘ ‘ . . . ’ . » . ‘ ‘ * . * \ 38°N Terrain Height (m) o

50°N

44°N

42°N

data can ‘pe attribut.ed to th.e ﬁxed mass—size simulation to test for improvements
and terminal velocity relationships in the

40°N

81°W 80°W

UPNB.
|’ t ’&4 a‘ ow 7w *Z./N,* vs. D;, appears not dependent on Acknowledgments
o LA L L LAY RAM & & ‘ RS y 15\1068%(1 dconﬁgurelljtlon 4.5, 1115 0.5 kgll ; precipitation rate and is a good way to * This work was funded by NASA
TSN  Using high-resolution NASA MUR SST product for lake temperature 4 PMM Grant NNXT6AE43G




