
Machine Learning approach and DNN model

Figure 2. The architecture of neural network uses Tb fields observed at 13 GMI channels to
provide input features. This is fed into fully connected hidden layers. The two precipitation
classes are given by two output neurons.

Methodology and Data
Problem of classifying convective vs. stratiform precipitation is posed as the supervised learning
problem given the availability of the data and the ability to prepare and label dataset for the
training of the classification algorithm. Specifically, deep learning methods are used to enable the
classification from raw satellite channels. In this application of deep learning we use a
feedforward neural network (Figure 2) with fully connected architecture [1]. Neural network was
developed using TensorFlow API, an open source software library for Machine Learning
Intelligence [2].

One year of GPM observations is used to train Deep Neural Network (DNN) model to retrieve two
classes of DPR combined precipitation type (convective and stratiform) based on GMI 13-channel
brightness temperature (Tb) vector.

Once available precipitation type flags are used to rebuild and subset an a priori database for
GMI instrument in GPROF retrieval. An independent 12-month period is used to test the
performance of the new, precipitation-type-enhanced, GPROF algorithm.

GPM products:
• GMI brightness temperatures (GPM_BASEGPMGMI_XCAL - V05) – training dataset
• DPR combined precipitation type (training dataset) and precipitation rates (GPM_2BCMB)

• GPROF GMI precipitation (application): PPS GPROF V5 (GPM_2AGPROFGPMGMI) 

MRMS data: 
• Quantitative precipitation estimates 
• Precipitation type 
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Objectives
A longlisting effort to retrieve precipitation rates form PMW observations resulted in high overall
accuracy of GPM precipitation products. However, their consistency across a variety of
atmospheric conditions and precipitating regimes is still far from an ideal. The cause is seen in
inability of the PMW retrieval to delineate between distinct vertical profiles of precipitable water
due to a column-integrated nature of its observation vector. This problem poses a major obstacle
in latent heat retrievals while affecting the accuracy of both the overall (Figure 1) and regional
precipitation estimates.
The presented study explores a potential that recent advances in computational resources have in
retrieving convective fraction of precipitating systems using PMWmeasurements only.

Summary
The potential of deep machine learning approach in retrieving precipitation type from passive microwave
observations is tested using GMI and DPR-combined GPM products. A relatively simple fully connected neural
network model, trained on collocated DPR-combined precipitation type flag and GMI 13-channel Tb vector, suggests
significant improvement in detection skill when compared to the existing GPROF scheme [3].

Seen as a potential solution for regime-driven bias in PMW precipitation retrievals [4], the model is implemented in
GPROF V5 to allow Bayesian scheme subset the a priori information and eliminate database entries of non-relevant
precipitation type. This led to reduction of precipitation type bias by a factor of 2 while convective and stratiform rain
distributions have approached that of DPR-combined product across entire convective fraction range.

Retrieving Precipitation Type Overall Effect on GPROF 
MRMS reference 

DPR-combined reference

One 12-month independent period of GMI observations (Tbs) is used to retrieve precipitation type over land surfaces globally.
Serving as a reference, collocated DPR-combined product has suggested an overall accuracy in assigning convective/stratiform flag to
GMI FOV of 85%. By class, the accuracy is split into 98% for stratiform and 39% for convective. Similar results are seen for over ocean
surface.

GPROF                         vs.                    DNN model

LAND Bias [%] Correlation Coeff.
Conv. Stra. Conv. Stra. All

GPROF V5 -28.66 25.09 0.637 0.674 0.589

GPROF w/DNN -15.67 13.71 0.652 0.689 0.614
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Results

Passive Microwave (GPROF) Precipitation type bias

Figure 1. GPROF GMI to DPR-combined Level-2 comparison. One year of conditional precipitation rate
averaged over GMI FOV and separated into convective (right) and stratiform (left) regime using
DPR-combined precipitation type flag.

Bias: -29 % Correlation: 0.63 Bias: 25 % Correlation: 0.67

Figure 3. A squall line over Midwest (MN & WI), July 13th 2015. MRMS (top); GPROF and DNN (middle); DPR-combined (bottom)


