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Objective: Apply DPR observations to assess the detection, A _ _ y
structure and bulk process parameters of orographic snowfall saon | CloudSat overpasses for CSU RAMS simulation for 17-24 December, 2015 focused over the
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* What are the global occurrence and intensity characteristics of
DPR-observed snowfall over areas subject to orographic influence?

* Can relationships between the terrain and the meteorology of the
flow incident on a terrain barrier be diagnosed and generalized?

* How do the terrain and flow properties affect snow formation and
transport processes?
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