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II – NESCoP : Efficient CBFM-based Scattering Model

I – Introduction :
We have developed a 3D full-wave model for Numerically Efficient calculation of Scattering
by Complex Particles (NESCoP). The key idea behind NESCoP is the use of a powerful direct
solver-based domain decomposition method, known as the Characteristic Basis Function
Method (CBFM). NESCoP maintains the advantages of the DDA, namely full-wave solution to
arbitrarily-shaped scatterer with inhomogeneous composition, while significantly surpassing
the DDA implementations in computational efficiency, particularly when considering a large
number of particle orientations. A wide spectrum of enhancements is worth considering to
further optimize the numerical efficiency of NESCoP and to improve its accuracy.

References : [1] Kuo, K. S., Olson, W. S., Johnson, B. T., Grecu, M., Tian, L., Clune, T. L., ... & Meneghini, R. (2016). The Microwave
Radiative Properties of Falling Snow Derived from Nonspherical Ice Particle Models. Part I: An Extensive Database of Simulated
Pristine Crystals and Aggregate Particles, and Their Scattering Properties. Journal of Applied Meteorology and Climatology, 55(3),
691-708. [2] Nguyen, H., Roussel, H., & Tabbara, W. (2006). A coherent model of forest scattering and SAR imaging in the VHF and
UHF-band. IEEE transactions on geoscience and remote sensing, 44(4), 838-848.E. [3] Lucente, G. Tiberi, A. Monorchio, and R.
Mittra, “An iteration-free MoM Approach Based on Excitation Independent Characteristic Basis Functions for Solving Large
Multiscale Electromagnetic Scattering Problems”, IEEE Trans. Antennas Propag., Vol. 56, no. 4, pp.999-1007, Apr. 2008.

Pristine crystals (a) simulated using the snowflake 
algorithm [1] and aggregate snow particles (b)

Frequencies of interest : 
(14 - 800 GHz) 

3D full-wave model based on the use of
the volume integral equation method
(VIEM) with piecewise constant basis
functions.
The model is applied here to pristine ice
crystals and aggregate snow particles
simulated by Kuo et al [1] using a 3D
growth model pioneered by Gravner
and Griffeath.

Integral representation of the total electric field (EFIE) :   

where

The particle is discretized into N cubic cells Ωn ,of side cn,
small enough to consider that the field inside is constant [2]

Application of a Method of Moments (MoM) :   

where

and

After dividing the 3D complex geometry of the particle of N cells into M blocks, the CBFM
process [3] consists in generating Si Characteristic Basis Functions (CBFs) for each block i in order
to generate a final reduced matrix of size K x K where 𝑲 = ∑𝒊%𝟏

𝑴 𝑺𝒊 . This results in a substantial
size-reduction of the MoM matrix and enables us to use of a direct method for its inversion.

Application of the Characteristic Basis Function Method :   

Generation of the CBFs

Computation of Zc

Block i

Example : M = 4

K = S1 + S2 + S3 + S4 << 3*N

Compression Rate
ICR	(%)		=	100	× size	of	ZMoM

size	of	Zc

NIPWs

Singular Value Decomposition (SVD)
thresholding (% σ1*10-3) 

Si CBFs for the block i

NIPWs

By storing and solving
the resulting reduced
system of equations,
instead of the original
one, we are able to
achieve a significant
gain both in terms of
CPU time and required
memory.

3 N

CBFM-E 

K << 3N

Z is the 3N x 3N full matrix
representing the interactions between
the cells composing the particle. Ei is
the incident field of size 3N and E is
the unknown solution vector of size
3N that represents the total electric
field inside the particle in the x, y and
z directions.

if m = n :  

if m ≠ n : 

if p = q ;  0 if p ≠ q

𝒄𝒏

To overcome the computational burden associated with the VIEM (O[(3N)2]), we use the CBFM, a
domain-decomposition method proven to be accurate and efficient when applied to large-scale EM
problems.

Direct solver

v Better adapted to multiple right-
hand side problem

v Highly amenable to MPI
parallelization

v Subject to a wide variety of 
enhancement techniques 

v Tunable depending on to the needs 
(memory or CPU) 

III – Enhancing the Computational Capabilities of NESCoP :
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where 𝑬 𝒓 is the field inside the scatterer, 𝑬𝒊 𝒓 is the incident field, 𝝌 𝒓8 is the dielectric 
contrast at the location rꞌ, k0 is the wavelength number in air and 𝑮 𝒓, 𝒓8 is the free space 
Green’s function. We rewrite the integral equation above as :

Г𝑬 𝒓 = 𝑬𝒊 𝒓 Г = 𝑰 − 𝒌𝟎
𝟐 + 𝜵𝜵. 5
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𝑬 𝒓 = @
A%B

C

@
D%B

E

𝐸DA 𝑭DA 𝒓
where 𝐸DA is the constant unknown of 𝐹DA, the nth basis 
function for the component (q=x, y or z) of the field 
inside the particle. 

To select a set of test functions 𝑊JK (m=1,..,M and p= x, y, z), the point matching method is 
used. So, M=N and 𝑊JK is a Dirac delta function concentrated at the center of the cell Ωn.
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The elements of 𝑍 = [𝑍JDKA] are given by 𝑍JDKA = δKAδJD − 𝑍JD
], KA where
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If m=n, in order to avoid singularities, 𝑍JD
],KA is computes using Hadmard regularization. 

Then the integral on Ωn is approximated by an integral on sphere of radius 𝑎A = 𝑐A c 3/(4𝜋).
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ap = 1.61 mm; dm=11.45 
mm;

@ λ=6 mm : xp = 1.68; 
xp,dmax = 6; |m|kd = 0.0935

Nbc =140896 cells 

CPU time by NESCoP and DDScat as function of the number of target 
orientations (to) for DDScat and incident directions (id) for NESCoP
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1. Accurate & Efficient Orientation-Averaging :

Adaptive Quadrature 

We investigate several quadrature schemes for integration over a spherical surface such as Lebedev
quadratures and spherical designs and test their performance on different particle shapes and sizes.

2h 12s + 3h 37m 16m 41s + 43s 16m 56s + 45s 

OpenMP : 16 CPUs 
with 64 GB RAM

MPI : 96 MPI tasks; 
2 nodes on TACC 
Stampede2 with 48 
cores & 192GB of 
RAM each    

Total : 28 h 26 min

Total : 1 h 56 min

12 λ & 2701 id

To understand the large relative
differences that we are seeing in
averaged backscattering quantities
between NESCoP and DDScat,
we look at the backscattering per
target orientation (to) or incident
wave direction (id) (θL, ϕL). It can
be clearly seen that the error is not
coming from Qbks per to/id.

2. MPI Parallelization of NESCoP :

27m 31s + 8m 45s 

We investigate the convergence of the averaging
over sphere schemes when DDScat and NESCoP are
applied to calculate the backscattering cross section
of 1) a cylinder of length L @ f = 35.75 GHz (λ =
8.39 mm) (right) and 2) a complex-shaped snow
aggregate (bottom) @ f = 94 GHz (λ = 3.19 mm)

Simpson’s Rule (in cosθ)

ap = 1.4246 mm; 
dm=11.75 mm;

@ 94 GHz  xp =2.81; 
xp,max =6; xp,dmax=11.6

|m|kd = 0.17
Nbc =96898 cells 

12m 34s + 3m 22s 

(top & left) Relative difference
in Qbks at f=94 GHz between
aq-5329id (ref) and aq-231id
(a), sd-240id (b), lb-266id (c)
and aq-703id (d) for a set of 178
particles of maximum diameter
ranging from 10 to 14 mm.
(right) CPU time for (b) and (d)

(a) (b) (c)

(d)

Poster 224

The MPI parallelization reduces drastically the computation time particularly
for the embarrassingly parallel loops in the calculation of the scattered field
𝑬𝒔, and the resolution of 𝒁𝒄𝜶 = 𝑬𝒄 due to the use of ScaLAPACK.


