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Part I: Effective Resolution
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THE CLASSICAL APPROACH IN COMPARING/VALIDATING PRODUCTS

► point to point or pixel to pixel comparison



How different are these two fields?

THE CLASSICAL APPROACH IN COMPARING/VALIDATING PRODUCTS

MRMS hourly at 1 km shifted by 7 km 



THE CLASSICAL APPROACH IN COMPARING/VALIDATING PRODUCTS

How different are these two fields?

=> Quite different at the pixel level!

𝑹𝟐 = 𝟎. 𝟓𝟒



Effective Resolution 

1. What is “The finest scale at which retrievals accurately reproduce the 
local spatial variability of a reference product”?

2.  Proposed a method to compute ER 

3.  Used ER as diagnostic tool



satellite 
precipitation 
field

Variance as a function of the scale

HRLR

10km20Km40Km80Km100Km



var. of sat. precip. field

satellite 
precipitation 
field

Variance as a function of the scale

HRLR



var. of sat. precip. field

satellite 
precipitation 
field

Variance as a function of the scale

radar 
precipitation 
field



var. of sat. precip. field

satellite 
precipitation 
field

Variance as a function of the scale

radar 
precipitation 
field

R2R2R2R2R2



var. of sat. precip. field

satellite 
precipitation 
field

Variance as a function of the scale

radar 
precipitation 
field

R2R2R2R2R2

var. explained: R2 × var(sat.) 



var. of sat. precip. field

satellite 
precipitation 
field

Precipitation signal or noise?

radar 
precipitation 
field

R2R2R2R2R2

var. explained: R2 × var(sat.) 

precipitation signal

noise



var. of sat. precip. field

satellite 
precipitation 
field

Precipitation signal or noise?

radar 
precipitation 
field

R2R2R2R2R2

var. explained: R2 × var(sat.) 

precipitation signal

noise

+0.45



var. of sat. precip. field

satellite 
precipitation 
field

Precipitation signal or noise?

radar 
precipitation 
field

R2R2R2R2R2

var. explained: R2 × var(sat.) 

precipitation signal

noise

+0.45

+0.15



var. of sat. precip. field

satellite 
precipitation 
field

Precipitation signal or noise?

radar 
precipitation 
field

R2R2R2R2R2

var. explained: R2 × var(sat.) 

precipitation signal

noise

+0.45

+0.15

+0.30

+0.20
+0.28

+0.12 +0.01

+0.19



var. of sat. precip. field

satellite 
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field
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noise variance added > signal variance added

=>These scales are unresolved 

Effective Resolution = 40 km

precipitation signal



Global map of the effective resolution of GPROF-GMI vs KuPR
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• Local values computed from all observations in 3°×3° boxes.
• March 2014 to February 2017: 16500 GPM orbits

long.
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TRMM era (2002-2013):
TMI GPROF V03 vs PR

GPM era (2014-2017):
GMI GPROF V05 vs KuPR
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Part II: Nonlocal information to improve 
PMW retrievals



The GPM radiometer algorithm

~ 10 km

TB observed

TB model  #1

TB model  #2

TB model  #3~10 km

TB observed

TB database profile #1

TB database profile #2

TB database profile #3

Step 1:  Use GPM Satellite to derive set of 
“Observed” profiles that define an a-priori 
database of possible rain structures.

Step2:  Compare observed Tb to 
Database Tb.  Select and average 
matching pairs
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Performing retrieval at the pixel-level ignores the 
3D structure of rain and does not account for sensor 

geometry (53 incidence angle)

=> Need to”look beyond the pixel”



Sensor geometry

A B C

What assigned to pixel A is influenced
from emission and scattering 
in the column above pixels B and C

How to tell pixel A, information 
about pixels B and C? 



• Low Frequencies: (<40 GHz): Significant 
overlapping of the fields of view

• High Frequencies: 53° Earth incident angle 
=> a vertical atmospheric column always 
intercepted by at least two different fields 
of view

• Different channels respond to different 
altitude levels

11 GHz

89 GHz

Radiometric information is split across pixels 
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space

nugget effect

IDENTICAL 
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Highly Underdetermined Inverse problem

Increasing the database 
size does not help

4,000 closest TB pixels  
(from an 8M database)
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Using ancillary data may 
help …
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insufficient
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RETRIEVAL DATABASE

surf. type: ocean 
surf. temp.: 300 K

TPW: 51 mm
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surf. temp.: 300 K
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250     260       270     280     290

89 GHz V TB (K)

TB patterns around the pixel of interest 
can contain useful information 

: GMI observation direction

strong negative TB 
gradient

nearly 
constant TB  



How to extract:

-- the most informative non-local parameters from the 
TB patterns 

-- to increase identifiability and reduce retrieval 
uncertainty? 

The challenge becomes:
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TB 89 GHz

TB 37 GHz

emission signal from 
liquid raindrops

no ice scattering 
signal

stratiform rain?
warm rain?
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TB 89 GHz

TB 37 GHz

deep convective rain
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TB 89 GHz
TB 37 GHz
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Features to explore 
in TB patterns:

-- Gradients of TB-89, TB-37
-- Average of TB-37
-- Depression in TB-89



For ice-scattering sensitive TBs (TB_89) the gradient along the observation 
direction is a predictor of the rain rate (independently from the TB value)
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same marginal 
distribution of TBs

more than double 
mean rain rate 

For ice-scattering sensitive TBs (TB_89) the gradient along the observation 
direction is a predictor of the rain rate (independently from the TB value)



Gaussian

Convolution filters to extract spatial information from fields of TB

• Pattern extraction
• Spatial averaging / smoothing  
• Spatial differentiation / edge detections 

/ gradients extraction
• Multiscale decompositions (wavelets)

1st derivative 
of Gaussian

Laplacian of 
Gaussian



Convolution filters to extract spatial information from fields of TB

* =

“nonlocal” parameter



KNN retrieval from GMI over land with a 700 000 - profile database: 

13 “pixel” TBs 
+ 2m temp. + surf. type

13 “pixel” TBs 
+ 2m temp. + surf. type
+ 3 nonlocal param. (at 
37 and 89 GHz)

MEAN ABSOLUTE ERROR 

• Along-track spatial derivative of 37 GHz V TB
• Along-track spatial derivative of 89 GHz V TB
• Low-pass filtered 37 GHz V TB (Gaussian σ = 20 km)  



KNN retrieval from GMI over land with a 700 000 - profile database: 

13 “pixel” TBs 
+ 2m temp. + surf. type

13 “pixel” TBs 
+ 2m temp. + surf. type
+ 3 nonlocal param. (at 
37 and 89 GHz)

-11 % -6 %

MEAN ABSOLUTE ERROR 



KNN retrieval from GMI over land with a 700 000 - profile database: 

13 “pixel” TBs 
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KNN retrieval from GMI over land with a 700 000 - profile database: 

13 “pixel” TBs 
+ 2m temp. + surf. type

13 “pixel” TBs 
+ 2m temp. + surf. type
+ 3 nonlocal param. (at 
37 and 89 GHz)

land ocean

45 % false alarm

FALSE DETECTION RATE



• Is Machine Learning (ML) the solution? 
• Eventually maybe, but not without physically-based dimensionality 

reduction first 
• Train Convolutional Neural Networks (CNNs) and by backwards 

methods see what patterns were retained in the training (attribution 
methods) 
• Could work on specific storm systems, e.g., snowstorms and learn 

patterns that “detect snow”, etc. 

What’s next? 

IPC12



• Guilloteau, C., and E. Foufoula-Georgiou, Beyond the pixel:  using 
patterns and multi-scale spatial information to improve the retrieval 
of precipitation from space-borne passive microwave imagers, J. 
Atmos. Oceanic Technol., in final revision, 2019. 

• Guilloteau, C., E. Foufoula-Georgiou, Multiscale evaluation of satellite 
precipitation products: effective resolution of IMERG, Chapter 3.5, in 
Satellite Precipitation Measurement, Springer, to appear, 2019



http://ipc12.eng.uci.edu

Special collection of papers – March 2020 

Precipitation estimation and prediction: 
Advances in hydroclimatology and impact 
studies (IPC12)

• Journal of Hydrometeorology (JHM),
• Journal of Climate (JCLI),
• Journal of Atmospheric and Oceanic Technology (JTECH),
• Journal of Applied Meteorology and Climatology (JAMC), and
• Weather Climate and Society (WCAS)
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