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Extreme Storm Urd – December 2016

Dec 26
MERRA-2

TCWV



*Do extreme snow and mixed-phase events 
associated with atmospheric rivers (AR) 
contribute disproportionately to the water 
cycle in high-latitude regions?

*How well do GPM observations characterize 
the structure and intensity of snow from AR-
enhanced events?
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Motivating Questions
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Atmospheric Rivers – What are they?

CIMSS, MIMC-TPWv2

Long, narrow regions 
of the atmosphere 
that transport 
relatively high 
amounts of water 
vapor outside the 
tropics to mid- and 
high-latitudes
• e.g. Pineapple 

Express

Potentially disruptive
• Flooding
• Winds
• Damage
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Atmospheric Rivers – High-Latitudes

Frequency of Atmospheric River Events 

Modified Figure 1 from Waliser and Guan (2017)
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Atmospheric Rivers – High-Latitudes

Frequency of Atmospheric River Events 

Modified Figure 1 from Waliser and Guan (2017)

In the high-latitudes (≥ 50°N/S):
• Occurrence of ARs > 10%
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Atmospheric Rivers – High-Latitudes
Extreme 

Winds

Frequency of Atmospheric River Events 

Modified Figure 1 from Waliser and Guan (2017)

In the high-latitudes (≥ 50°N/S):
• ~50% AR events have extreme 

winds at landfall
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Atmospheric Rivers – High-Latitudes

Extreme 
Precipitation

Frequency of Atmospheric River Events 

Modified Figure 1 from Waliser and Guan (2017)

In the high-latitudes (≥ 50°N/S):
• >40% AR events are associated 

with extreme precipitation
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Atmospheric Rivers – High-Latitudes
Extreme 

Winds

Extreme 
Precipitation

Frequency of Atmospheric River Events 

Modified Figure 1 from Waliser and Guan (2017)
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Integrated Water Vapor Transport

Collaborator: Kyle Mattingly (Rutgers University)
Mattingly et al., Geophysical Research Letters, 2016 
doi: 10.1002/2016GL070424 MERRA-2:

specific humidity, winds

Integrated Water Vapor Transport = IVT
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Atmospheric Rivers – Detection

Mattingly et al., JGR, 2018 

Raw IVT threshold of
>150 kg m-1 s-1 

IVT Percentile Rank of
>85th %-ile

Intensity:
Integrated Water Vapor Transport = IVT
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Atmospheric Rivers – Detection

Length threshold of 
>1500 km

Length to width ratio 
>1.5

Size
Length and “narrowness”

Mattingly et al., JGR, 2018 
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Atmospheric Rivers – Detection

Collaborator: Kyle Mattingly (Rutgers University)
Mattingly et al., Journal of Geophysical Research: Atmospheres, 2018 
doi: 10.1029/2018JD028714

Mattingly et al., JGR, 2018 
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Atmospheric Rivers – Detection

Mattingly et al., JGR, 2018 

AR identification database 
for Northern Hemisphere 
high-latitudes:

• IVT from MERRA-2
• Re-gridded to 0.5° by 

0.5°
• 6-hourly resolution
• 1979 – 2018 
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Atmospheric Rivers – Detection
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Atmospheric Rivers – Detection



Project Objectives
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* Objective 1: Leverage the abundance of global GPM 
observations at high-latitude to assess high-impact, 
AR-influenced wintertime precipitation events 
between March 2014 and present
* Evaluate the accuracy of reanalysis-based high-latitude AR 

identification methods using GMI water vapor products
* Characterize the frequency and spatial structure of AR-enhanced 

snow and mixed-phase precipitation using GMI brightness 
temperatures and snow rate products (GPROF) and examine the 
temporal evolution of these extreme events
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GPM Orbit – High-latitude Advantage

22Objective 1



23

GPM Orbit – High-latitude Advantage

GPM at High-Latitude:
• GPM has several 

overpasses 
• 2 – 5 per day 

between 50°N and 
69°N

• Maximum at 61°N
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GPM Orbit – High-latitude Advantage

GMI at High-Latitude:
• GMI swath width is 

885 km which allows 
100s of observations 
per day per (1°)2

• 200 – 400 
observations per 
day between 50°N 
and 69°N
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Project Objectives

* Objective 1: Leverage the abundance of global GPM 
observations at high-latitude to assess high-impact, 
AR-influenced wintertime precipitation events 
between March 2014 and present
* Evaluate the accuracy of reanalysis-based high-latitude AR 

identification methods using GMI water vapor products
* Characterize the frequency and spatial structure of AR-enhanced 

snow and mixed-phase precipitation using GMI brightness 
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temporal evolution of these extreme events
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ARs and GMI Water Vapor
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ARs and GMI Water Vapor
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ARs and GMI Water Vapor
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ARs and GMI Water Vapor
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Project Objectives

* Objective 1: Leverage the abundance of global GPM 
observations at high-latitude to assess high-impact, 
AR-influenced wintertime precipitation events 
between March 2014 and present
* Evaluate the accuracy of reanalysis-based high-latitude AR 

identification methods using GMI water vapor products
* Characterize the frequency and spatial structure of AR-enhanced 

snow and mixed-phase precipitation using GMI brightness 
temperatures and snow rate products (GPROF) and examine the 
temporal evolution of these extreme events
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ARs and Precipitation (GPROF)
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ARs and Precipitation (GPROF)

32Objective 1

0536 UTC 
GPROF



33

ARs and Precipitation (GPROF)
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0709 UTC 
GPROF
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ARs and Precipitation (GPROF)
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0841 UTC 
GPROF
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ARs and Precipitation (GPROF)
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1041 UTC 
GPROF
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ARs and Precipitation (GPROF)
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1146 UTC 
GPROF
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ARs and Precipitation (GPROF)
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1319 UTC 
GPROF



* Objective 2: Utilize ground-based in-situ and remote-
sensing instrument observations located at a high-
latitude site to evaluate GMI snow estimates during 
AR events 
* Assess estimates of the fractional snow accumulation associated 

with ARs derived from GMI observations using ground-based 
observations

* Evaluate the microphysical characteristics of the AR-enhanced 
precipitation using ground-based remote-sensed and in-situ 
measurements

Project Objectives
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Ground-Based Observations

Collaborator: Mareile Wolff (MetNorway)
• Snow instrument suite in Haukeliseter, 

Norway 
• 59.81°N latitude, 991 m elevation
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Ground-Based Observations

• Meteorological data (temperature, 
relative humidity, winds)

• Snow accumulation
• Double Fence Automated 

Reference
• Broadband radiation
Data available from 2014 – present
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Ground-Based Observations

• MicroRain Radar
• Precipitation Imaging Package

First deployment winter 2016 – 2017

Second deployment winter 2020 – 2021



* Objective 2: Utilize ground-based in-situ and remote-
sensing instrument observations located at a high-
latitude site to evaluate GMI snow estimates during 
AR events
* Assess estimates of the fractional snow accumulation associated 

with ARs derived from GMI observations using ground-based 
observations

* Evaluate the microphysical characteristics of the AR-enhanced 
precipitation using ground-based remote-sensed and in-situ 
measurements

Project Objectives
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GV and GMI Collocation

08:21 UTC
GPROF

MRR
Reflectivity

mm hr-1

dBZ
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GV and GMI Collocation

09:56 UTC
GPROF

08:21 UTC
GPROF

MRR
Reflectivity

mm hr-1

dBZ
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GV and GMI Collocation

11:32 UTC
GPROF

09:56 UTC
GPROF

08:21 UTC
GPROF

MRR
Reflectivity

mm hr-1

dBZ
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GV and GMI Collocation

13:07 UTC
GPROF

11:32 UTC
GPROF

09:56 UTC
GPROF

08:21 UTC
GPROF

MRR
Reflectivity

mm hr-1

dBZ



* Objective 2: Utilize ground-based in-situ and remote-
sensing instrument observations located at a high-
latitude site to evaluate GMI snow estimates during 
AR events 
* Assess estimates of the fractional snow accumulation associated 

with ARs derived from GMI observations using ground-based 
observations

* Evaluate the microphysical characteristics of the AR-enhanced 
precipitation using ground-based remote-sensed and in-situ 
measurements

Project Objectives
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GV Observations and ARs

12 UTC
MERRA-

2WV AR approaching the site, 
still off shore at 1200UTC.

MRR
Reflectivity

dBZ
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GV Observations and ARs

AR approaching the site, 
still off shore at 1200UTC.

11:46 UTC
GPROF

MRR
Reflectivity

dBZ
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GV Observations and ARs

AR impacting the site 
(arrow) and onshore at 
1800UTC.

18 UTC
MERRA-2 

WV

MRR
Reflectivity

dBZ
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Summary
* Current Work:
* Developed collocated GPM observations with identified ARs

* GMI water vapor product
* GMI GPROF precipitation rate product

* Evaluating ground-based observations for specific 2016-2017 events

* Planned work:
* Extend the collocated observations to include GMI brightness 

temperature (with Joe Munchak and Mark Kulie)
* Extend AR detection through 2019 (and beyond) and to southern 

hemisphere (with Kyle Mattingly)
* Year 2 deployment of MRR and PIP to Norway in 2020-2021 (with 

Mareile Wolff)
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