Stability of the Intrinsic Shape of the DSD using Data from Different Rain Climatologies
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0. Introduction

Using the double-moment scaling-normalization framework of Lee et al. (2004), the DSD can be expressed in compact form as N(D)=Np' h(x) where x is the scaled diameter (D/D,,’) and Nj' is the normalization parameter. The Ny' and D,," are

Whereas h(x) can be any function that has finite moments, the DPR and combined algorithms assume apriori that h(x) is the gamma distribution with one sh
model with two shape parameters (Jgg, ¢) has been used to describe h(x) since it gives more flexibility for characterizing simultaneously the shapes at the small
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to be close to the generalized gamma distribution with concave up shape at small x (i.e., the p;c=-0.5).
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ficient accuracy with the Joss, Parsivel or the 2D-video disdrometers (2DVD) as they do not have the required resolution (e.g., 50 microns or better). The resulting
will be incorrect (for x<0.75 or so) and for the gamma model will give positive p (typically 2 to 3) resulting in a conve ' '
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However, when an optical array probe with high resolution is
arger sizes the 2DVD data are used. The resulting h(x) was found

The optical array probe and the 2DVC were collocated at three sites (Greeley CO; semi—arig), §Huntsville AL; sub-tropical) and (Wallops Island; coastal mid-latitude). We also use DSDs from the “fast” 2D-cloud probe (resolution of 25 microns)
S

on the C-130 aircraft during the Drizzle (Oceanic Shallow Warm Rain Stratocumulus Clou

FE Pacific west of Chile) .

or rainfall over the open ocean, the OceanRain database from shipborne ODM disdrometer measurements in 2018 were

used (R/V Investigator which departed Perth and followed a SSE path towards the southern mid-latitudes). While the resolution of the ODM is unclear the smallest drop size recorded is 0.4 mm. The other database is from JAMSTEC (Japan)
using the Thies LPM disdrometer on the R/V Mirai. Data from open ocean, inland (Laos), coastal land and coastal ocean (all sites close to the equator near Sumatra.). Hence, we have sampled different rain climatologies to determine the stability
of h(x) by fitting to a generalized gamma model and determining the variations of the shape parameters (y, c).

If the h(x) is in fact found to be stable, then most of the variability in the DSDs can be attributed to Ny and D,,,.
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Fig.1.1: The MPS, 2DVD and Pluvio gage inside DFIR at

(a) Greeley, CO, (GXY) and (b) Huntsville, AL, (HSV)
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Fig. 1.3: The generalized gamma distribution with
Nw=4266 mm! m-3 and Dyp=1.5 mm. The exponential

shape corresponds to pge=1 and c=1. The standard
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Fig.1.5: The frequency of occurrence (or, density) plot of h(x)
for 3-min averaged DSDs along with the IQR. From GXY

The median h(x) in Fig. 1.5 and 1.6 are very similar in spite of the semi-
arid and sub-tropical rain climatologies. The median h(x) can be fitted

to the generalized gamma model . A “bulge” in h(x) is evident in both
cases, centered around x=0.4 region. It is unlikely that the bulge is
caused by instrumentation problems, rather it is possible that the bulge
reflects specific drop break-up mechanism such as filament break-up
(McFarquhar 2004) from collisions of sub-mm sized (70.5 mm) drops
with mm-sizes (T 2-3 mm). Such a bulge has also been noted for DSDs
from Korea and Oklahoma. The histograms of p and ¢ for Greeley
DSDs are given below in Fig. 1.7
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Fig. 1.2 (a): Schematic of
the 2DVD. Drop images in
two orthogonal planes are
provided from which 3D-
reconstruction of drops can
be deduced.

Fig. 1.2 (b): Photo of the
optical array probe or MPS

made

by Droplet Meas.
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Fig. 1.4: Example of a 3-min DSD from MPS, 2DVD
and “complete” spectrum fitted to the generalized
gamma model. The pge=-0.29 and c=6
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Fig.1.6: Same as Fig. 1.5, except h(x) is from 3-min DSDs
from HSV
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Fig. 1.7: Histograms of p and log;,c from
fitting each 3-min DSDs from GXY

2. h(x) for Outer Rainbands from Irma, Nate, Dorian
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Fig. 2.1: Density plot of h(x) from (a) Irma and (b) Nate as the rainbands traversed the site
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in Huntsville. Panel (c) shows

h(x) for Dorian rainbands over the site at Wallops Is. The black dashed line is the most probable h(x) fitted to the
generalized Gamma model using DSDs from Greeley and Huntsville. This curve passes close to the median h(x) from the
3-min DSDs measured in the rainbands of Irma, Nate and Dorian. The stability of h(x) is quite remarkable considering the

differences between the rainbands and the rainfall occurring in Greeley and Huntsville.
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Fig. 2.2: Density plot of pu from GG fits to 3-min

log, , [(x)]

DSDs from the Greeley site. The IQR is shown for
bins of D,,'. There is no correlation between u and
D,' in this dataset. More generally, empirical
relations between p and D' are inconsistent with
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Fig. 2.3: Density plot of ¢ from same DSDs as in

left panel. Note that c=1 rarely occurs (standard
gamma). The range of c values is seen to vary from

2-6 in this dataset.

Fig. 2.4: Aircraft 1-sec DSDs from NSF/NCAR C-130 with fast 2D-
C probe with 25 micron resolution from 50-1600 microns Data
collected in drizzle in marine stratocumulus during VOCALS
project at 1.4 km MSL in SE Pacific, West of Chile (12-31 deg S;
69-86 deg W; Mean altitude of 1.4 km; warm rain processes)
Wood et al. Atmos Chem Phys (2011). (Quality controlled DSDs
provided by Dr. Jorgen Jensen NCAR).

Solid red line is the median h(x) for bins of x. Overlay of black
dashed line is most probable h(x) from Greeley and Huntsville
combined DSDs. The overlap of h(x) from shallow stratocumulus
drizzle with the h(x) from Greeley-Huntsville is indicative of
stability across very different rainfall regimes.

See histograms of D,, below.
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3. h(x) from Shipborne Disdrometers

Coastal Ocean (Mirai, 2015+2017) Coastal Land (BKS, 2015+2017)
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Fig.3.1: Oceanic DSD observation onboard R/V “Mirai” of 1-min h(x). Red line: h(x) with c=3, p=-0.5 (just for reference)
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4. Conclusions

® The double-moment scaling-normalization framework of Lee et al. (2004) is a powerful tool for DSD studies since it gives the
intrinsic shape of the DSD [or, h(x)]. The density plot of h(x) is typically highly compressed (i.e., small IQR) and the generalized
gamma fit to the median values is stable and not dependent on the rain type classification. This result was previously stated by
Protat et al. (2020) using the OceanRain data set and the ODM disdrometer without a collocated high resolution optical array probe.

@ The determination of an invariant h(x; y, c) for the particular climatology depends on accurate measurements of the complete size
spectrum, the choice of the reference moment orders, the method of fitting, the cost function used and the temporal resolution of the

DSDs.

@ The statistics of Nw and Dm and their co-variability are more important to characterize in different rain types as opposed to the
much smaller variability in h(x).

@ One caveat is that the complete DSD must be measured to give correct h(x) but most disdrometers cannot measure the small drops
with good resolution, i.e., they give truncated distributions for which h(x) can be stable but incorrect.
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