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Characterization of satellite surface precipitation estimates and bridging Level-2 GPM core, constellation and combined Level-3 estimates.
Needed in water cycle and extreme events studies, weather and climate prediction; over land in flood prediction and water resources.
Objectives

. use the Ground Validation Multi-Radar/Multi-Sensor (GV-MRMS; Kirstetter et al. 2018a) to provide a consistent reference research framework for
creating conterminous US (CONUS)-wide comparison benchmark of precipitation retrievals across the GPM core and constellation satellites.

. cross-platform characterization acts as a bridge to intercalibrate active and passive microwave measurements from the GPM core satellite to the
constellation satellites and propagate to Level-3 precipitation products.

Space sensors and products
@MM-PR/TMI, GPM-DPR/GMI, SSMIS, AMSR-2, DMSP-SSM/I, MHS, ATMS, IMERG J

Background: MRMS
MRMS provides 3D reflectivity mosaics
and QPE products over CONUS at 1-km?/2-
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test, and assess advanced
techniques in quality control,
data integration and
precipitation estimation.
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1. consistency check 2. error analysis
space vs. ground space sensors
radars i vs. reference
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Reference precipitation
Establish a trustworthy reference
precipitation database in real-time /
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bright band stratiform convective A intermittent, highly skewed precipitation distribution. A new approach
- ~ Satellite L3 comparison _ [Reference L3 called Probabilistic QPE using Infrared Satellite Observations (PIRSO) is
,; _ 7; - gridded - 1km / 30min proposed to advance the use of uncertainty as an integral part of QPE.
§ g H - 30-min PIRSO precipitation  probability maps outperform  conventional
g: w/ g ;: deterministic QPE by mitigating biases like PERSIANN-CCS used in
i _ N _ . IMERG. PIRSO quantifies uncertainty needed for precipitation ensembles
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S S R I LG L ) 2D Heidke Skill ‘?‘»cores GV-MRMS vs. IMERG extremes for hydrometeorological hazards (Kirstetter et al. 2018b).
Rty (uz) Retecnay (a2) Retecovey ouz) Conditions: 0.1%/30-min RQI =100 & NEXRAD < 100 km
Diagnostic/prognostic analysis: DPR algorithm parameters HQ (Passive Like most of the operational merged products, IMERG uses IR estimates

IMERG FINAL

based on only one channel. The impact of multi-spectral observations from
GOES-16 on precipitation type identification is investigated through
machine learning.
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» Consistent improvement observed in the classification performance with
more channels. This result encourages to use more ABI channels.

» There is a significant jump in the accuracy for most precipitation types
by adding the WV channel T6.2 to the IR T11.2.

Reference | 1} prognostic QPE > The HQ component shows generally better agreement with

Storm system at 12:30 UTC on 18 April 2016 near Houston GV-MRMS than IMERG FINAL, than IR.
» IMERG final shows slightly better agreement with GV-

Evaluation over the period June 2014 — Sept. 2016

A MRMS over ocean than land.
(4:M LELE L DPR-MSMS estimates) . » Surprisingly HQ shows better agreement over Land and fReIevance and Broader Impact : \
brightband o e Coast than over Ocean. + Evaluation & development of GPM precipitation
-- | Bias(%) Corelation | ias (%) Corelation || ~ iﬁaf;‘fgflﬁze' agreement over Ocean, than over Coast || o nropagation of uncertainties in Level 3 precipitation
DPR +55% 19.5% 036 155% 030 .
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