GPM Refereed Publications

Tomoo, U., K. Sasashige, and T. Kubota, et al., : A Kalman Filter Approach to the Global Satellite Mapping of Precipitation (GSMaP) from Combined Passive Microwave and Infrared Radiometric Data. J. Meteor. Soc. Japan, 87A, 137-151, doi:10.2151/jmsj.87A.137.
Tong, K., Y. Zhao, Y. Wei, B. Hu, and Y. Lu, : Evaluation and Hydrological Validation of GPM Precipitation Products over the Nanliu River Basin, Beibu Gulf. Water, 10, 1777, doi:10.3390/w10121777.
Toyoshima, K., H. Masunaga, and F. A. Furuzawa, : Early Evaluation of Ku- and Ka-Band Sensitivities for the Global Precipitation Measurement (GPM) Dual-Frequency Precipitation Radar (DPR). SOLA, 11, 14-17, doi:10.2141/sola.2015-004.
Tridon, F., A. Battaglia, R. J. Chase, F. J. Turk, J. Leinonen, S. Kneifel, K. Mroz, J. Finlon, A. Bansemer, S. Tanelli, A. J. Heymsfield, and S. W. Nesbitt, : The Microphysics of Stratiform Precipitation During OLYMPEX: Compatibility Between Triple‐Frequency Radar and Airborne In Situ Observations. JGR Atmos., 124(15), 8764-8792, doi:10.1029/2018JD029858.
Trinh-Tuan L., J. Matsumoto, T. Ngo-Duc, M. I. Nodzu, and T. Inoue, : Evaluation of satellite precipitation products over Central Vietnam. Progress in Earth and Planetary Science, 6(54), , doi:10.1186/s40645-019-0297-7.
Turk, F. J., L. Li, and Z. S. Haddad, : A Physically Based Soil Moisture and Microwave Emissivity Data Set for Global Precipitation Measurement (GPM) Applications. IEEE Transactions on Geoscience Remote Sensing, 52, 7637-7650, doi:http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6824177.
Turk, F. J., R. Padullés, D. D. Morabito, T. Emmenegger, and J. D. Neelin, : Distinguishing Convective-Transition Moisture-Temperature Relationships with a Constellation of Polarimetric Radio Occultation Observations in and near Convection. Atmosphere, 13(2), 259, doi:10.3390/atmos13020259.
Turk, F. J., R. Padullés, E. Cardellach, C. O. Ao, K.-N. Wang, D. D. Morabito, M. de la Torre Juarez, M. Oyola, S. Hristova-Veleva, and J. D. Neelin, : Interpretation of the Precipitation Structure Contained in Polarimetric Radio Occultation Profiles Using Passive Microwave Satellite Observations. J. Atmos. Oceanic Technol., 38(10), 1727–1745, doi:10.1175/JTECH-D-21-0044.1.
Turk, F. J., R. Sikhakolli, P. Kirstetter, and S. L. Durden, : Exploiting Over-Land OceanSat-2 Scatterometer Observations to Capture Short-Period Time-Integrated Precipitation. J. Hydrometeor., 16, 2519-2535, doi:10.1175/JHM-D-15-0046.1.
Turk, F. J., S. E. Ringerud, A. Camplani, D. Casella, R. J. Chase, A. Ebtehaj, J. Gong, M. Kulie, G. Liu, L. Milani, G. Panegrossi, R. Padullés, J.-F. Rysman, P. Sanò, S. Vahedizade, and N. Wood, : Applications of a CloudSat-TRMM and CloudSat-GPM Satellite Coincidence Dataset. Remote Sens., 13(12), 2264, doi:10.3390/rs13122264.
Turk, F. J., S. E. Ringerud, Y. You, A. Camplani, D. Casella, G. Panegrossi, P. Sano, A. Ebtehaj, C. Guilloteau, N. Utsumi, C. Prigent, and C. Peters-Lidard, : Adapting Passive Microwave-Based Precipitation Algorithms to Variable Microwave Land Surface Emissivity to Improve Precipitation Estimation from the GPM Constellation. J. Hydrometeor., 22(7), 1755-1781, doi:10.1175/JHM-D-20-0296.1.
Turk, F. J., S. Hristova-Veleva, S. L. Durden, S. Tanelli, O. Sy, G. D. Emmitt, S. Greco, and S. Q. Zhang, : Joint analysis of convective structure from the APR-2 precipitation radar and the DAWN Doppler wind lidar during the 2017 Convective Processes Experiment (CPEX). Atmos. Meas. Tech., 13(8), 4521–4537, doi:10.5194/amt-13-4521-2020.
Turk, F. J., Z. S. Haddad and Y. You, : Estimating Nonraining Surface Parameters to Assist GPM Constellation Radiometer Precipitation Algorithms. J. Atmos. Oceanic Technol., 33, 1333–1353, doi:10.1175/JTECH-D-15-0229.1.
Turk, F. J., Z. S. Haddad, and Y. You, : Principal Components of Multifrequency Microwave Land Surface Emissivities. Part I: Estimation under Clear and Precipitating Conditions. J. Hydrometeor., 15, 3-19, doi:10.1175/JHM-D-13-08.1.
Turk, J., Z. Haddad, P. E. Kirstetter, S. Ringerud, Y. You, : An observationally based method for stratifying a priori passive microwave observations in a Bayesian‐based precipitation retrieval framework. Q. J. R. Meteor. Soc., 144, 145-164, doi:10.1002/qj.3203.
Ueno, K., W. Mito, R. Kanai, Y. Ueji, K. Suzuki, H. Kobayashi, I. Tamagawa, M. K. Yamamoto, and S. Shige, : Distribution of precipitation depending on synoptic scale disturbances with satellite estimate comparisons in the Japanese Alps area during warm seasons. Journal of Geography, 128, 31-47, doi:.
Ullrich, P. A., C. M. Zarzycki, E. E. McClenny, M. C. Pinheiro, A. M. Stansfield, and K. A. Reed, : TempestExtremes v2.1: a community framework for feature detection, tracking, and analysis in large datasets. Geosci. Model Dev., 14(8), 5023–5048, doi:10.5194/gmd-14-5023-2021.
Upadhyaya, S., P. E. Kirstetter, J. J. Gourley, and R. J. Kuligowski, : On the Propagation of Satellite Precipitation Estimation Errors: From Passive Microwave to Infrared Estimates. J. Hydrometeor., 21(6), 1367–1381, doi:10.1175/JHM-D-19-0293.1.
Upadhyaya, S., P. E. Kirstetter, R. Kuligowski, and M. Searls, : Classifying precipitation from GEO satellite observations: Diagnostic model. Quart. Journal of the Royal Meteorological Society, 147(739), 3318-3334, doi:10.1002/qj.4130.
Upadhyaya, S., P. E. Kirstetter, R. Kuligowski, J. Gourley, and H. Grams, : Classifying precipitation from GEO satellite observations: Prognostic model. Quart. Journal of the Royal Meteorological Society, 147(739), 3394-3409, doi:10.1002/qj.4134.