GPM Applications Banner: Disasters

Using GPM Data for Disasters and Risk Management

Too much or too little rainfall can have significant impacts on populations around the world. As population and global temperatures increase, it is crucial to understand what locations will become more vulnerable to extreme rainfall and drought and the subsequent natural hazards (e.g., landslides) and risks (e.g., lose of property) they impose. Satellites allow us to monitor changes in the precipitation, especially over oceans and regions where ground-based data are sparse. With its near-real-time precipitation estimates and near global coverage, GPM serves as an essential tool for assessing risk and planning disaster response and recovery.  For example, near-real-time precipitation data from GPM are used within various models to help monitor and predict the path and intensity of tropical storms, vegetation fire starting and spreading, and landslide activity across the globe. The Disasters and Risk Management applications area seeks to use the GPM precipitation satellite data to improve forecasting, preparation, response, recovery, mitigation and insurance of natural hazards including tropical cyclones, floods, droughts, wildfires, landslides, and other extreme weather events.

Overview

Sections

GPM Data for Decision Making

Image

GPM's GMI / DPR provides views of hurricane Lane’s precipitation, showing intense storms near the center on August 19, 2018. Credit: Hal Pierce (SSAI/NASA GSFC).

 

The GPM Mission provides insight into how and why some tropical cyclones intensify and others weaken as they move from tropical to mid-latitude systems. The GPM Core Observatory’s GMI and DPR instruments allow scientists to study the internal structure of storms throughout their life cycle, and view how they change over time. Specifically, the GMI has the capability to measure the amount, size, intensity, and type of precipitation, from heavy-to moderate rain to light rain and snowfall. The DPR returns three-dimensional profiles and intensities of liquid and solid precipitation, revealing the internal structure of storms within and below clouds. Scientists use these instruments to track tropical cyclones and forecast their progression and to verify their tropical cyclone computer models. They also use instrument data to understand the distribution and movement of latent heat throughout the storm, particularly in the development of hot towers in the wall of clouds around the eye, which have been linked to rapid intensification. Together, these instruments will improve hurricane tracking and forecasts, which can help decision makers save lives.

View tropical cyclones articles

Image

Submerged Houston neighborhoods in the wake of Tropical Storm Harvey on August 29, 2017. Credit: Marcus Yam / Getty Images

To better understand and predict floods scientists have developed hydrological models based on how much rainfall occurs and where the water will likely go once it hits the ground. They use several satellite precipitation datasets within these models to provide near real-time estimates of when and where areas may flood on local, regional, and global scales. GPM provides frequent precipitation observations with near global coverage, of which 80% are less than 3 hours apart, exceeding the minimum deemed necessary for hydrometeorological applications. Therefore, rainfall data measured by the GPM Mission and its products, like the Integrated Multi-satellitE Retrievals for GPM (IMERG) data product, helps us better understand how changing precipitation patterns at multiple scales translates changes into hydrologic fluxes and states that can be used for flood detection and warning systems.

View floods articles

Image

Aerial view of landslide that buried Colonia las Colinas, El Salvador. Credit: USGS

Landslides are one of the most pervasive hazards in the world, resulting in more fatalities and economic damage than is generally recognized. Saturating the soil on vulnerable slopes, intense and prolonged rainfall is the most frequent landslide trigger, but seismicity, river undercutting, freeze-thaw processes, and human activity can also cause extensive and devastating landslides. Understanding where and when landslides have occurred in the past and where they may occur in the future is extremely challenging because of the lack of ground-based sensors at the landslide site to provide both triggering information (e.g. rainfall intensity and duration), and the timing and extent of the mass movement events. Precipitation measurements from remote sensing allows us to gain new insight to identify landslide activity, characterize the triggering patterns of these events spatially and temporally, assess the surface conditions for potential activity, and support the full cycle of disaster risk assessment. In particular, GPM’s more frequent and more detailed coverage of precipitation across the globe can help improve landslide model accuracy and expand potential landslide forecasting capabilities.

Learn more about GPM applications for landslides

Image

High severity fire in the western U.S. Credit: USDA Forest Service

Wildfires play an integral role in maintaining ecosystem biodiversity and structure.  Wildfires, which include any non-structure fire that occurs in vegetation or natural fuels, is an essential process that connects terrestrial systems to the atmosphere and climate.  However, the effects of fire can be disastrous, both immediately (e.g., poor air quality, loss of life and property) and through post-fire impacts (floods, debris flows/landslides, poor water quality). Wildfires can be triggered by several factors including lightning, high winds, drought, and people. 

There are several ongoing activities using remote sensing data to support pre-, active- and post-fire research, as well as the applicable use of these data and products in support of management decisions and strategies, policy planning and in setting rules and regulations. Frequent precipitation measurements from GPM along with temperature and land cover measurements from other satellites can provide key information to determine the overall dryness of an area and the potential start and spread of a vegetation fire. 

View wildfires articles
 

Image

GPM's GMI and DPR observe rainfall accumulation over the storm and 3-D vertical structure in a line of intense storms associated with the mesoscale convection system over northern New Mexico and Oklahoma on June 25, 2018. Credit: Hal Pierce (SSAI/NASA GSFC)

 

Many regions in the world experience severe weather such as thunderstorms, hail, tornadoes, and blizzards every year. Severe weather usually comes with heavy precipitation and causes unexpected hydrometeorological hazards, such as floods or landslides, which can affect thousands of people, posing a threat on life and property. Therefore, it is critically important to monitor severe weather and estimate heavy precipitation so that the occurrence and intensity of associated hydrometeorological hazards can be well identified, detected, and forecasted. Where ground-based instruments are sparse, remote sensing systems can be especially useful to observe and monitor these extreme events. Microwave sensors used by the GPM Mission allows scientists to map thunderstorm cores to gain insight into storm structures and mesoscale dynamics (e.g. thunderstorms to hurricanes) as well as detect light rain to moderate-to heavy rain and snowfall. Delivery of precipitation data from the GPM Mission is crucial for operational and research organizations to advance precipitation measurement science to improve weather forecasting that can subsequently benefit society for years to come. 

View severe weather articles

 

Image

Coast Guardsmen use a boat to assist residents during severe flooding around Baton Rouge, LA on August 14, 2016. Credit: Petty Officer 3rd Class Brandon Giles/Coast Guard

Every year, landslides wipe out roads or town, devastating floods put city blocks underwater, or a violent hurricane devastates the coastal communities. Natural hazards, like Hurricane Maria or flooding in Houston, have huge impacts on people around the world. Heavy rains and large storm systems are often significant factors that cause these disasters to have huge economic costs or even kill people. The best defense against natural hazards is accurate and early warning systems. Understanding the timing, location, and intensity of precipitation extremes using GPM data, organizations that handle disaster response and recovery can monitor, assess, and understand the damage or potential damage of a disaster. These efforts help to minimize the impact of a natural disaster as well as effectively coordinate with organizations and the public before, during, after so as many people are safe and needs are met. 

Image

A house on the Jersey Shore submerged in water in the aftermath of Hurricane Sandy.  Credit: Jim Greenhill via BU Today

The insurance and disaster management industries are closely related; dealing with the risk of natural disaster and managing the events following disasters. Reinsurance companies work to understand the need of its potential customers and the risks to which they may be exposed.  A companies’ success is generally tied to the ability to forecast the probability of natural hazards, including storms, floods, and landslides. Earth Science data and information derived from remote sensing instruments over the last decade have made it more feasible to develop climate records and understand region’s susceptibility to a natural disaster. Such data are then used to design payout triggers when natural hazards occurs. Policyholders are then compensated according to the strength of the measured event against those triggers. Specially, reinsurance companies across the world use rainfall data from GPM to develop rainfall thresholds to design insurance payouts when disasters strike. 

Disasters Featured Resources

Jump to a Year

2022 | 2021 | 2020 | 2019 | 2018

2017 | 2016 | 2015 | 2014 | 2013

2012 | 2011 | 2010 | 2009 | 2008

2007 | 2006 | 2005 | 2004 | 2003

2002

top image for Sahara 2024
Most people live in places where it rains much more often than it does in the Sahara Desert. For this reason, it can be challenging to make sense of news reports of major storms in the Sahara. NASA satellite data and rainfall statistics can give the needed context. Below is a discussion of three news stories about rainfall in or near the Sahara Desert during August and September 2024. These news stories described storm runoff, infrastructure damage, and the rain's impact on the ecosystems at the edge of the desert. Areas with significant impacts are shown in green in Figure 1. Figure 1. A map
Screenshot of IMERG rain rates on October 29, 2024
During the 10-day period from Oct. 26 through Nov. 4, 2024, parts of central-eastern and southern Spain saw unusually heavy flooding that resulted in heavy infrastructure damage and over 200 fatalities, according to the Associated Press . In this animation, NASA’s IMERG multi-satellite data product shows estimated rain rates (blue/yellow shading) and accumulations (green/purple shading) from the flooding rainfall. Cloudiness is also shown in white/gray shading, from geosynchronous infrared satellite observations. Download video (right-click -> "Save As") The flooding was caused by heavy
Map IMERG rainfall totals from Milton.
While the GPM Core Observatory’s instruments show exceptional detail in Milton’s rainfall structure in several overpasses throughout the week, the IMERG global multi-satellite product provides a broader overview of precipitation along Milton’s track as a continuous picture from development through landfall. Download this video (right-click -> "save as") The above animation shows IMERG precipitation rates (in blue/yellow shading) and accumulations (in green/purple shading) from Oct. 5-10, 2024. Cloudiness is shown in shades of white/gray using infrared geosynchronous satellite data. While
GPM data shows precipitation within Hurricane Milton over the Gulf of Mexico on Oct. 7, 2024.
Updated Oct. 10, 2024 Click here for a visualization of IMERG precipitations and totals from Hurricane Milton. After forming in the Bay of Campeche, Hurricane Milton underwent a remarkable period of rapid intensification with its central pressure falling from 1007 mb (29.74 inches of mercury, inHg) at 11:00 a.m. EDT Oct. 5 to 897 mb (26.49 inHg) at 8:00 p.m. EDT on Oct. 7. At this time Milton became the fifth most intense hurricane in the Atlantic Basin on record in terms of central pressure, just behind Hurricane Rita (2005) on that list, and only the sixth storm in the Atlantic to have a
Map of IMERG rainfall totals from Hurricane Helene.
After tracking through the eastern Gulf of Mexico and battering much of the west coast of Florida with strong winds and storm surge, Hurricane Helene made landfall in the Big Bend region of Florida’s northwest coast at 11:10 pm EDT about 10 miles west-southwest of Perry, Florida, as a powerful Category 4 hurricane with maximum sustained winds reported at 140 mph by the National Hurricane Center (NHC). Hurricane Idalia, a strong Category 3 storm at the time, also made landfall in the Big Bend last year. Animation of NASA IMERG precipitation rates and totals from Hurricane Helene from Sept. 23 -
Screenshot of IMERG rain rates on October 29, 2024
During the 10-day period from Oct. 26 through Nov. 4, 2024, parts of central-eastern and southern Spain saw unusually heavy flooding that resulted in heavy infrastructure damage and over 200 fatalities, according to the Associated Press . In this animation, NASA’s IMERG multi-satellite data product shows estimated rain rates (blue/yellow shading) and accumulations (green/purple shading) from the flooding rainfall. Cloudiness is also shown in white/gray shading, from geosynchronous infrared satellite observations. Download video (right-click -> "Save As") The flooding was caused by heavy
Map IMERG rainfall totals from Milton.
While the GPM Core Observatory’s instruments show exceptional detail in Milton’s rainfall structure in several overpasses throughout the week, the IMERG global multi-satellite product provides a broader overview of precipitation along Milton’s track as a continuous picture from development through landfall. Download this video (right-click -> "save as") The above animation shows IMERG precipitation rates (in blue/yellow shading) and accumulations (in green/purple shading) from Oct. 5-10, 2024. Cloudiness is shown in shades of white/gray using infrared geosynchronous satellite data. While
GPM data shows precipitation within Hurricane Milton over the Gulf of Mexico on Oct. 7, 2024.
Updated Oct. 10, 2024 Click here for a visualization of IMERG precipitations and totals from Hurricane Milton. After forming in the Bay of Campeche, Hurricane Milton underwent a remarkable period of rapid intensification with its central pressure falling from 1007 mb (29.74 inches of mercury, inHg) at 11:00 a.m. EDT Oct. 5 to 897 mb (26.49 inHg) at 8:00 p.m. EDT on Oct. 7. At this time Milton became the fifth most intense hurricane in the Atlantic Basin on record in terms of central pressure, just behind Hurricane Rita (2005) on that list, and only the sixth storm in the Atlantic to have a
Map of IMERG rainfall totals from Hurricane Helene.
After tracking through the eastern Gulf of Mexico and battering much of the west coast of Florida with strong winds and storm surge, Hurricane Helene made landfall in the Big Bend region of Florida’s northwest coast at 11:10 pm EDT about 10 miles west-southwest of Perry, Florida, as a powerful Category 4 hurricane with maximum sustained winds reported at 140 mph by the National Hurricane Center (NHC). Hurricane Idalia, a strong Category 3 storm at the time, also made landfall in the Big Bend last year. Animation of NASA IMERG precipitation rates and totals from Hurricane Helene from Sept. 23 -
3D map of GPM precipitation estimates from within Hurricane Francine as it approached the Gulf Coast.
Updated: Wednesday, September 18, 2024 Hurricane Francine made landfall on Wednesday, September 11, at 5:00 p.m. CDT on the southern coast of Louisiana, approximately 30 miles south-southwest of Morgan City. The National Hurricane Center (NHC) classified it as a Category 2 storm, with maximum sustained winds estimated at 100 mph. Francine originated from a westward-moving tropical wave of low pressure, known as an African easterly wave. This wave, as is typical, emerged off the west coast of Africa before traversing the tropical Atlantic and Caribbean. These waves often serve as seedlings for
A grid showing many examples of the data GPM has collected in its 10 years of operation.
The joint NASA / JAXA Global Precipitation Measurement (GPM) mission has been tracking rain and snow around the globe for over 10 years, providing valuable insights into Earth's weather and climate. Now in its tenth year of operation, we look at ten events brought to light by this groundbreaking mission.
GPM 10-year banner
Too little or too much precipitation can mean the difference between life and death. Join us as we learn about the impacts of having too much or too little precipitation and the disasters that can occur as a result. Discover what we are learning about the connection between extreme weather events and climate change. Find out the many ways that NASA is helping us monitor and respond to natural hazards and disasters.
IMERG rainfall totals in South Africa, April 5 - 18, 2022.
An upper-level area of low pressure tapped into the warm waters of the South Indian Ocean to bring heavy rains and flooding to parts of South Africa during the second week of April. The event unfolded when an upper-level trough of low pressure embedded within the midlatitude westerlies traversed the southern part of Africa from west to east. As the trough approached the east coast of South Africa, an area of low pressure became detached from the main flow, this “cut off” low then drifted over the warm waters of the Agulhas Current, which channels warmer waters from the tropical Indian Ocean
IMERG rainfall totals from the Nov. 2021 atmospheric river.
The Pacific Northwest coast saw two atmospheric rivers (ARs) bring heavy rains from Nov. 10-16, 2021, resulting in severe flooding, landslides, and damage to infrastructure in the British Columbia province of Canada. ARs are long, narrow corridors of water vapor that travel vast distances above the ocean from warm, tropical regions to higher latitudes, where they often release their moisture as rainfall when they reach land areas. While ARs occur across the globe, this year has been notable for several strong events that have impacted the Pacific Northwest coast. The two atmospheric rivers in
IMERG Rainfall Rates and MUR Sea Surface Temperatures from the 2020 Hurricane Season
Forecasters predicted an above-normal hurricane season for 2020. They weren’t wrong. As the 2020 Atlantic hurricane season smashed records with an unprecedented 30 named storms , NASA’s Earth Applied Sciences Disasters Program stood up to the challenge. The Disasters Program helps leaders and responders at national, regional, and local levels leverage NASA’s technology and expertise to assess, predict, and understand disasters' impacts. The Disasters Program targets a wide range of hazards and disasters , and while NASA is not an operational response agency, the agency offers access to unique

Through rain and snow, hurricane, typhoon and monsoon, flash flood and bomb cyclone, for ten years, the joint NASA-JAXA Global Precipitation Measurement mission has measured a lot of water. GPM’s Core Observatory satellite launched from Tanegashima Space Center in Japan in early 2014, becoming the first satellite to be able to see through the clouds and measure liquid and frozen precipitation from the Equator to polar regions using a radar. Now in its tenth year of operation, we look at ten events brought to light by this groundbreaking mission. Credits: NASA's Goddard Space Flight Center

GPM IMERG precipitation rates and totals from Tropical Cyclone Freddy, Feb. 6 - March 12, 2023. Credit: NASA 

Download in high resolution from the NASA Goddard Scientific Visualization Studio

Cameras outside the International Space Station captured dramatic views of Hurricane Zeta at 12:50 pm ET October 28, as it churned 200 miles south-southwest of New Orleans packing winds of 90 miles an hour. Credit: NASA International Space Station

GPM overpass of Tropical Storm Zeta on October 25 at approximately 2:15pm CDT (19:15 UTC). Half-hourly rainfall estimates from NASA’s multi-satellite IMERG dataset are shown in 2D on the ground, while rainfall rates from GPM’s DPR instrument are shown as a 3D point cloud, with liquid precipitation shown in green, yellow and red, and frozen precipitation shown in blue and purple. Credit: NASA Goddard Scientific Visualization Studio

View an interactive 3D visualization of this overpass in STORM Event Viewer

GPM captured Dorian at 10:41 UTC (6:41 am EDT) on the 4th of September when the storm was moving north-northwest parallel to the coast of Florida about 90 miles due east of Daytona Beach.  Three days earlier, Dorian had struck the northern Bahamas as one of the most powerful Category 5 hurricanes on record in the Atlantic with sustained winds of 185 mph.  The powerful storm to ravaged the northern Bahamas for 2 full days.  During this time, Dorian began to weaken due to its interactions with the islands as well as the upwelling of cooler ocean waters from having remained in the same location...

Hide Body

Hide Date