GPM Refereed Publications

Displaying 141 - 160 of 588 Total Publications
Honeyager, R., G. Liu, and H. Nowell, 2015: Voronoi diagram-based spheroid model for microwave scattering of complex snow aggregates. J. Quant. Spec. Rad. Trans., 170, 28-44, doi:10.1016/j-jqsrt-2015.10.025.
Hong, Y., R. Adler, G. Huffman, and A. Negri, 2007: Use of satellite remote sensing data in the mapping of global landslide susceptibility. Natural Hazards, 43(2), 245–256, doi:10.1007/s11069-006-9104-z.
Hossain, F. and D. P. Lettenmaier, 2006: Flood prediction in the future: Recognizing hydrologic issues in anticipation of the Global Precipitation Measurement mission. Water Resources Research, 42, doi:10.1029/2006WR005202.
Hou, A. Y., G. Skofronick-Jackson, C. Kummerow, and J. M. Shepherd, 2008: Microphysical Properties of Frozen Particles Inferred from Global Precipitation Measurement (GPM) Microwave Imager (GMI) Polarimetric Measurements. Chapter 6 in Precipitation: Advances in Measurement, Estimation and Prediction, Editor: Silas Michaelides, Springer-Verlag, 540pp., doi:ISBN: 978-3-540-77654-3.
Hou, A. Y., R. K. Kakar, S. Neeck, A. Azarbarzin, C. D. Kummerow, M. Kojima, R. Oki, K. Nakamura, and T. Iguchi, 2014: The Global Precipitation Measurement Mission. Bull. Amer. Meteor. Soc., 95, 701-722, doi:10.1175/BAMS-D-13-00164.1.
Houze Jr., R. A., J. Wang, J. Fan , S. Brodzik, and Z. Feng, 2019: Extreme Convective Storms Over High‐Latitude Continental Areas Where Maximum Warming Is Occurring. Geophys. Res. Letts., 46, 4059–4065, doi:10.1029/2019GL082414.
Houze, R. A., Jr., L. A. McMurdie, W. A. Petersen, M. R. Schwaller, W. Baccus, J. Lundquist, C. Mass, B. Nijssen, S. A. Rutledge, D. Hudak, S. Tanelli, G. G. Mace, M. Poellot, D. Lettenmaier, J. Zagrodnik, A. Rowe, J. DeHart, L. Madaus, and H. Barnes, 2017: The Olympic Mountains Experiment (OLYMPEX). Bull. Amer. Meteor. Soc., 98, 2167–2188, doi:10.1175/BAMS-D-16-0182.1.
Huang, G.-J., V. N. Bringi, A. J. Newman, G. Lee, D. Moisseev, and B. M. Notaroš, 2019: Dual-wavelength radar technique development for snow rate estimation: a case study from GCPEx. Atmos. Meas. Tech., 12, 1409–1427, doi:10.5194/amt-12-1409-2019.
Huang, H. and F. Chen, 2019: Precipitation Microphysics of Tropical Cyclones Over the Western North Pacific Based on GPM DPR Observations: A Preliminary Analysis. J. Geophys. Res. - Atmos., 124, 3124–3142, doi:10.1029/2018JD029454.
Iguchi, T, T. Matsui, W.-K. Tao, A. P. Khain, V. T. J. Phillips, C. Kidd, T. L'Ecuyer, S. A. Braun, and A. Hou, 2014: WRF–SBM Simulations of Melting-Layer Structure in Mixed-Phase Precipitation Events Observed during LPVEx. J. Appl. Meteor. Climatol., 53, 2710-2731, doi:10.1175/JAMC-D-13-0334.1.
Iguchi, T. and R. Meneghini, 1994: Intercomparison of Single-Frequency Methods for Retrieving a Vertical Rain Profile from Ariborne or Spaceborne Radar Data. J. Atmos. Oceanic Technol., 11, 1507-1516, doi:10.1175/1520-0426(1994)011<1507:IOSFMF>2.0.CO;2.
Iguchi, T., N. Kawamoto, and R. Oki, 2018: Detection of Intense Ice Precipitation with GPM/DPR. J. Atmos. Oceanic Tech., 35, 491-502, doi:10.1175/JTECH-D-17-0120.1.
Iguchi, T., T. Matsui, A. Tokay, P. Kollias, and W.-K. Tao, 2012: Two distinct modes in one-day rainfall event during MC3E field campaign: Analyses of disdrometer observations and WRF-SBM simulation. Geophy. Res. Lett., 39, doi:10.1029/2012GL053329.
Iguchi, T., T. Matsui, J. J. Shi, W.-K. Tao, A. P. Khain, A. Hou, R. Cifelli, A. Heymsfield, and A. Tokay, 2012: Numerical analysis using WRF-SBM for the cloud microphysical structures in the C3VP field campaign: Impacts of supercooled droplets and resultant riming on snow microphysics. J. Geophys. Res., 117, doi:10.1029/2012JD018101.
Ishizaka, M. H. Motoyoshi, S. Yamaguchi, S. Nakai, T. Shiina, and K.-I. Muramoto, 2016: Relationships between Snowfall Density and Solid Hydrometeors Based on Measured Size and Fall Speed, for Snowpack Modeling Applications. The Cryosphere, 10, 2831-2845, doi:10.5194/tc-10-2831-2016.
Islam, T., M. A. Rico-Ramirez, D. Han, P. K. Srivastava, and A. M. Ishk, 2012: Performance evaluation of the TRMM precipitation estimation using ground-based radars from the GPM validation network. J. of Atmos. .Solar Terrestrial Phys., 77, 194-208, doi:10.1016/j.jastp.2012.01.001.
Itoh, S., T. Oguchi, T. Iguchi, H. Kumagai, and R. Meneghini, 1995: Depolarization of Radar Signals due to Multiple Scattering in Rain. IEEE Trans. Geosci. Remote Sensing, 33(4), 1057-1062, doi:10.1109/36.406691.
Jensen, M. P., T. Toto, D. Troyan, P. E. Ciesielski, D. Holdridge, J. Kyrouac, J. Schatz, Y. Zhang, and S. Xie, 2015: The Midlatitude Continental Convective Clouds Experiment (MC3E) sounding network: operations, processing and analysis. Atmos. Meas. Tech., 8, 421-434, doi:10.5194/amt-8-421-2015.
Jensen, M. P., W. A. Petersen, A. Bansemer, N. Bharadwaj, L. D. Carey, D. J. Cecil, S. M. Collis, A. D. Del Genio, B. Dolan, J. Gerlach, S. E. Giangrande, A. Heymsfield, G. Heymsfield, P. Kollias, T. J. Lang, S. W. Nesbitt, A. Neumann, M. Poellot, S. A. Rutledge, M. Schwaller, A. Tokay, C. R. Williams, D. B. Wolff, S. Xie, and E. J. Zipser, 2016: The Midlatitude Continental Convective Clouds Experiment (MC3E). Bull. Amer. Meteor. Soc., 97, 1667-1686, doi:10.1175/BAMS-D-14-00228.1.
Jiang, L. and P. Bauer-Gottwein, 2019: How do GPM IMERG precipitation estimates perform as hydrological model forcing? Evaluation for 300 catchments across Mainland China. J. Hydrology, 572, 486-500, doi:10.1016/j.jhydrol.2019.03.042.