TRMM Refereed Publications

Displaying 201 - 220 of 650 Total Publications
Heymsfield, G. M., J. M. Shepherd, S. W. Bidwell, W. C. Boncyk, I. J. Caylor, S. Ameen, and W. S. Olson, 1996: Structure of Florida Thunderstorms Using High-Altitude Aircraft Radiometer and Radar Observations. J. Appl. Meteor., 35(10), 1736–1762, doi:10.1175/1520-0450(1996)035<1736:SOFTUH>2.0.CO;2.
Heymsfield, G. M., S. W. Bidwell, I. J. Caylor, S. Ameen, S. Nicholson, W. Boncyk, L. Miller, D. Vandemark, P. E. Racette, and L. R. Dod, 1996: The EDOP Radar System on the High-Altitude NASA ER-2 Aircraft. J. Atmos. Oceanic Tech., 13(4), 795–809, doi:10.1175/1520-0426(1996)013<0795:TERSOT>2.0.CO;2.
Hirose, H., M. K. Yamamoto, S. Shige, A. Higuchi, T. Mega, T. Ushio, and A. Hamada, 2016: A rain potential map with high temporal and spatial resolutions retrieved from five geostationary meteorological satellites. SOLA, 12, 297-301, doi:10.2151/sola.2016-058.
Hirose, M., and K. Nakamura, 2004: Spatiotemporal Variation of the Vertical Gradient of Rainfall Rate Observed by the TRMM Precipitation Radar. J. Climate, 17(17), 3378–3397, doi:10.1175/1520-0442(2004)017<3378:SVOTVG>2.0.CO;2.
Hirose, M., S. Shimizu, R. Oki, T. Iguchi, D. A. Short, and K. Nakamura, 2012: Incidence-Angle Dependency of TRMM PR Rain Estimates. J. Atmos. Oceanic Technol., 29(2), 192-206, doi:10.1175/JTECH-D-11-00067.1.
Hirose, M., Y. N. Takayabu, A. Hamada, S. Shige, and M. K. Yamamoto, 2017: Spatial contrast of geographically induced rainfall observed by TRMM PR. J. Climate, 30, 4165-4184, doi:10.1175/JCLI-D-16-0442.1.
Hirose, M., Y. N. Takayabu, A. Hamada, S. Shige, and M. K. Yamamoto, 2017: Impact of long-term observation on the sampling characteristics of TRMM PR precipitation. J. Appl. Meteor. Climatol., 56, 713-723, doi:10.1175/JAMC-D-16-0115.1.
Hirose, M., Y. Takayabu, A. Hamada, S. Shige, and M. Yamamoto, 2016: Impact of long-term observation on the sampling characteristics of TRMM PR precipitation. J. Appl. Meteor. Climatol., doi:10.1175/JAMC-D-16-0115.1.
Hirota, N. and Y. N. Takayabu, 2012: Inter-model differences of future precipitation changes in CMIP3 and MIROC5 climate models. J. Meteor. Soc. Japan, 90A, 307-317,
Hirota, N., and Y. N. Takayabu, 2013: Reproducibility of precipitation distribution over the tropical oceans in CMIP5 multiclimate models compared to CMIP3. Climate Dynamics, 41, 2909-2920, doi:10.1007/s00382-013-1839-0.
Hirota, N., Y. N. Takayabu, M. Kato, and S. Arakane, 2016: Roles of an atmospheric river and a cutoff low in the extreme precipitation event in Hiroshima on 19 August 2014. Mon. Wea. Rev., 144, 1145-1160, doi:10.1175/MWR-D-15-0299.1.
Hirota, N., Y. N. Takayabu, M. Watanabe, M. Kimoto, and M. Chikira, 2014: Roles of convective entrainment in spatial distributions and temporal variations of precipitation. J. Climate, 27, 8707-8723, doi:10.1175/JCLI-D-13-00701.1.
Hirota, N., Y. N. Takayabu, M. Watanabe, M. Kimoto, and M. Chikira, 2011: Precipitation reproducibility over tropical oceans and its relationship to the double ITCZ problem in CMIP3 and MIROC5 climate models. J. Climate, 7, 4859-4873, doi:10.1175/2011JCLI4156.1.
Ho, C.-H., M.-S. Park, Y.-S. Choi, Y. N. Takayabu, 2008: Relationship between intraseasonal oscillation and diurnal variation of summer rainfall over the South China Sea. Geophys. Res. Lett., 35, L03701, doi:10.1029/2007GL031962.
Hong, Y., and H.-S. Lim, 1994: Evidence for Low-Frequency Waves of Tropical Rainfall Inferred from Microwave Brightness Temperature. Mon. Wea. Rev., 122, 1364-1370, doi:10.1175/1520-0493(1994)122<1364:EFLFWO>2.0.CO;2.
Hong, Y., and R. F. Adler, 2007: Estimation of global SCS curve numbers using satellite remote sensing and geospatial data. Int'l. J. Rem. Sen., 29(2), 471-477, doi:10.1080/01431160701264292.
Hong, Y., C. D. Kummerow, and W. S. Olson, 1999: Separation of Convective and Stratiform Precipitation Using Microwave Brightness Temperature. J. Appl. Meteor., 38(8), 1195–1213, doi:10.1175/1520-0450(1999)038<1195:SOCASP>2.0.CO;2.
Hong, Y., J. L. Haferman, W. S. Olson, and C. D. Kummerow, 2000: Microwave Brightness Temperatures from Tilted Convective Systems. J. Appl. Meteor., 39(7), 983–998, doi:10.1175/1520-0450(2000)039<0983:MBTFTC>2.0.CO;2.
Hong, Y., K. L. Hsu, S. Sorooshian, and X. Gao, 2005: Improved representation of diurnal variability of rainfall retrieved from the Tropical Rainfall Measurement Mission Microwave Imager adjusted Precipitation Estimation From Remotely Sensed Information Using Artificial Neural Networks (PERSIANN) system. J. Geophys. Res. Atmos., 110(D6), D06102, doi:10.1029/2004JD005301.
Hong, Y., K. L. Hsu, X. Gao, and S. Sorooshian, 2004: Precipitation Estimation from Remotely Sensed Imagery Using an Artificial Neural Network Cloud Classification System. J. Appl. Meteor., 43(12), 1834–1853, doi:10.1175/JAM2173.1.

Pages