PMM Science Banner

Science

 

 

Water is fundamental to life on Earth, affecting the behavior of the weather, climate, energy and ecological systems as water moves through the Earth’s water cycle as vapor, liquid and ice. Precipitation, a key component of the water cycle, is difficult to measure since rain and snow vary greatly in both space and time.

Obtaining reliable ground-based measurements of rain and snow often presents a formidable challenge due to large gaps between reliable instruments over land and, particularly, over the oceans. From the vantage point of space, satellites provide more frequent and accurate observations and measurements of rain and snow around the globe. This allows key insights into when, where and how much it rains or snows globally, supplying vital information to unravel the complex roles water plays in Earth systems.

In order to gain further insights into the relationships between the components of the Earth’s water cycle, we need to know not only how much rain falls at the surface but also the distribution of rain, snow, and other forms of precipitation within the atmosphere above the surface. This allows us to characterize precipitation processes that are vital to understanding the links and the transfer of energy (heat) between the Earth’s surface and atmosphere.

NASA’s Global Precipitation Measurement Mission (GPM) provide advanced information on rain and snow characteristics and detailed three-dimensional knowledge of precipitation structure within the atmosphere, which help scientists study and understand Earth's water cycle, weather and climate.

Related Articles
Pacific NW Campaign to Measure Rain & Snow
From Nov. 10 through Dec. 21, NASA and university scientists are taking to the field to study wet winter weather near Seattle, Washington. With weather radars, weather balloons, specialized ground instruments, and NASA's DC-8 flying laboratory, the science team will be verifying rain and snowfall observations made by the Global Precipitation Measurement (GPM) satellite mission. Credits: NASA's Goddard Space Flight Center The Pacific Northwest was chosen because of its frequent and persistent winter rain and snowfall. On average 100 to 180 inches of precipitation fall a year, making it one of...
Media are invited to go behind the scenes of a comprehensive field campaign focused on yielding new insights into global precipitation at a special event on Nov. 11, 2015.  NASA's DC-8 deploys to Iceland on a mission to study Arctic polar winds. NASA's DC-8 flying laboratory will be featured as part of a special media event on Nov. 11, 2015 focused on the Olympic Mountain Experiment (OLYMPEX), an Earth science campaign aimed at validating Global Precipitation Measurement. Credits: NASA Photo / Carla Thomas
Media are invited to go behind the scenes of a comprehensive field campaign focused on yielding new insights into global precipitation at a special event on Nov. 11, 2015. NASA's DC-8 flying laboratory will be featured as part of a special media event on Nov. 11, 2015 focused on the Olympic Mountain Experiment (OLYMPEX), an Earth science campaign aimed at validating Global Precipitation Measurement. Credits: NASA Photo / Carla Thomas Held in collaboration with the University of Washington, NASA's Olympic Mountain Experiment (OLYMPEX) is an Earth science campaign aimed at validating Global...
Global Precipitation Measurement (GPM) Is In Position to Watch Effects of 2015’s El Niño
Since late in 2014, scientists in many different disciplines (including meteorologists, climate scientists, physical and biological oceanographers, hydrologists, and geologists) have been watching a slow-to-develop El Niño even in the tropical Pacific Ocean. After teasing observers with conditions that did not quite meet El Niño criteria1, the event finally reached official El Niño status in March and April, and is now expected to become a powerful event lasting into the next Northern Hemisphere winter. If these conditions, typified by warm sea surface temperatures (SST) in the tropical...
How Does NASA Study Hurricanes?
Hurricanes are the most powerful weather event on Earth. NASA’s expertise in space and scientific exploration contributes to essential services provided to the American people by other federal agencies, such as hurricane weather forecasting. The National Oceanic and Atmospheric Administration and the National Hurricane Center (NHC) use a variety of tools to predict these storms’ paths. These scientists need a wealth of data to accurately forecast hurricanes. NASA satellites, computer modeling, instruments, aircraft and field missions contribute to this mix of information to give scientists a...
A Tale of Two Extremes: Rainfall Across the US
The United States has seen a tale of two extremes this year, with drenching rains in the eastern half of the country and persistent drought in the west. A new visualization of rainfall data collected from space shows the stark contrast between east and west for the first half of 2015. The accumulated precipitation product visualized here begins on Jan. 1, 2015, and runs through July 16, 2015. This visualization shows the heavy rainfall throughout Northern Texas and across Oklahoma as well as the drought in Southern California. Credits: NASA Goddard's Scientific Visualization Studio Download...

Hide Body

Hide Date