Ground Validation

Content related to ground validation activities and field campaigns.

Document Description

The IDL procedure geo_match_z_pdf_profile_ppi_bb_prox_sca_ps.pro provides the capability to compute statistics and generate displays of PR and GV reflectivity from geometry-matched data produced by the GPM Validation Network prototype. These data are contained in a set of netCDF data files, one per “rainy” site overpass: a TRMM PR overpass of a ground radar (GV) site, with precipitation echoes present, referred to below as an “event”.

Document Description

The IDL procedure pr_and_geo_match_x_sections.pro provides the capability to interactively select locations for, and display, vertical cross sections of PR and GV reflectivity from geometry-matched data produced by the GPM Validation Network prototype. These data are contained in a set of netCDF data files, one per “rainy” site overpass (a TRMM PR overpass of a GV radar site, with precipitation echoes present). By default, the procedure also displays a vertical cross section of the difference (PR-GV) between the PR and GV reflectivity from the geo-matched data.

Document Description

A Validation Network (VN) prototype is currently underway that compares data from the Tropical Rainfall Measuring Mission (TRMM) satellite Precipitation Radar (PR) to similar measurements from the U.S. national network of operational weather radars. This prototype is being conducted as part of the ground validation activities of the Global Precipitation Measurement (GPM) mission. The purpose of the VN is to provide a means for the precipitation community to identify and resolve significant discrepancies between the U.S.

Document Description

This specification defines the Level 3 functional and performance requirements for NASA’s Global Precipitation Measurement (GPM) mission Ground Validation System (GVS). Overall, the GPM mission has defined a series of scientific objectives which include improvement in predicting terrestrial weather, climate, and hydrometeorology through a better observational understanding of the global water cycle. The purpose of the GPM GVS is rooted in the need for independent and objective evaluation of the precipitation products generated by the GPM mission.

Document Description

This specification defines the Level 3 functional and performance requirements for NASA’s Global Precipitation Measurement (GPM) mission Ground Validation System (GVS). Overall, the GPM mission has defined a series of scientific objectives which include improvement in predicting terrestrial weather, climate, and hydrometeorology through a better observational understanding of the global water cycle. The purpose of the GPM GVS is rooted in the need for independent and objective evaluation of the precipitation products generated by the GPM mission.

Document Description

The Light Precipitation Evaluation Experiment (LPVEx) planned for the Gulf of Finland in September and October, 2010 will seek to address this shortcoming by collecting microphysical properties, associated remote sensing observations, and coordinated model simulations of high latitude precipitation systems to drive the evaluation and development of precipitation algorithms for current and future satellite platforms.

Document Description

During the winter of 2006-2007, a number of in-situ and remote sensing precipitation measuring devices were operated at the Center of Atmospheric Research Experiment (CARE) site located near Egbert, Ontario about 30 km to the NW of the King City C-band operational dual-polarized radar. While the experiment was originally designed to measure winter precipitation for the Canadian Cloudsat/CALIPSO validation program (C3VP), the NASA’s Global Precipitation Measurement (GPM) ground validation program joined the efforts (cf.

Document Description

A summary of C3VP data access.

WRF Simulated Radar Reflectivity Animation

Submitted by JacobAdmin on Fri, 03/04/2011

The illustration above illustrates simulated composite radar reflectivity (in dBZ) generated by Wei-Kuo Tao and co-workers from the Weather Research and Forecasting (WRF) model in conjunction with the Goddard Cumulus Ensemble (GCE) model. Note how the model output captures the timing and transition of lake effect snow bands to the synoptic snowfall event that occurred during the period from January 20-22, 2007. The model results will be compared to measurements made by C3VP ground-based and aircraft-based instruments that operated during the same period.