GPM Applications: Water & Agriculture
Growing human population, increased demand for water and energy, and a changing climate have contributed to concerns of how freshwater resources and food supply and production may be stressed. Both water resource managers and the agricultural community need to know the amount, distribution, timing and onset of seasonal rain and snow to prepare for freshwater shortages and forecast crop yields. Remotely sensed precipitation estimates play a key role in predicting changes in freshwater supply and agricultural forecasting. Specifically, GPM provides advance precipitation measurements on regional
GPM Applications: Energy
In many areas, energy infrastructure assets, such as power plants and electric grids, can suffer damage or disruption in service due to a variety of climate-related impacts like extreme precipitation, high temperatures, drought, and rising sea levels. For example, warmer temperatures and little rainfall can cause changes in peak streamflow conditions that affect hydropower generation. Heavy precipitation events and flooding can impact a region’s energy infrastructure, including electric grid equipment, which has cascading effects on freshwater supplies and emergency services. The Energy
GPM Applications: Ecology
The impacts of climate change are already having a profound effect on ecosystems. Changes in temperature and precipitation patterns affect species and communities in diverse ways, such as declines in species and species diversity, changing interactions between species, and modification of ecosystems. Effective ecosystem management is critical to maintaining and repairing the natural environments in order to reliably support human needs while conserving and sustaining ecological services and diversity. Satellite observations can provide critical information relevant to the distribution of

GPM Examines Weakening Tropical Cyclone Kenanga

Tropical cyclone Kenanga has started to weaken as predicted. The GPM core observatory satellite had an excellent view of Kenanga on December 20, 2018 at 1454 UTC when the tropical cyclone's maximum sustained winds had decreased to about 90 kts (103.5 mph). That GPM pass also showed that the eye that was so prominent a day earlier had filled. Data collected by the satellite's Microwave Imager (GMI) and GPM's Dual-Frequency Precipitation Radar (DPR) instruments revealed through the overcast that powerful storms south of Kenanga's center of circulation were still producing very heavy rainfall