Articles

GPM flying over Earth with a data swath visualized.
To augment the observations and provide additional test cases for synthetic algorithm development and satellite simulator testing, a number of modeling activities are also planned. Cloud resolving model simulate frozen precipitation events using the GSFC-Weather Research and Forecasting (WRF) will be performed, initialized and forced by appropriate NWP forecast models. The GSFC WRF has single-moment Goddard Microphysics and spectral-bin microphysics. All of the microphysical schemes have their own set of unique capabilities and assumptions, and all will be tested by the GPM groups. In turn...
GPM flying over Earth with a data swath visualized.
Frozen precipitation is particularly difficult to measure from space due to the wide variability in snowflake shapes and behavior. Snowflakes can have different impacts on the active and passive instruments signals compared to liquid precipitation, which is further complicated by a weak signal to noise ratio resulting from different scattering properties of liquid verses frozen precipitation. In recent years, the capability to quantify liquid precipitation from space has been greatly enhanced with the addition of several measurement capabilities from low-Earth orbit, most notably from passive...
GPM flying over Earth with a data swath visualized.
Falling snow is critically important for society in terms of freshwater resources, atmospheric water and energy cycles, and ecosystems. However, there are few archives of falling snow around the world that can be used to improve measurements from satellites. GCPEx will make detailed in situ observations of cloud and frozen precipitation microphysics to improve these databases. Falling snow represents a primary contribution to regional atmospheric and terrestrial water budgets, particularly at high latitudes. While often overlooked, precipitation falling in the form of snow is critically...
GPM flying over Earth with a data swath visualized.
NASA technicians spun the GPM satellite up to just over 10 RPM in Goddard Space Flight Center’s High-Capacity Centrifuge facility March 31 2011. Put Some Spin On It If you've ever taken a fast curve in a car, you've felt your body pushed outward, away from the curve. That outward push is centrifugal force, and the faster you turn, the more it pushes you away from the center. Spinning on the centrifuge does the same thing to the satellite -- except the centrifugal forces are a lot bigger -- capable of going up to 30 times the force of gravity, or "g's." GPM's test went up to seven g's. But...
GPM on the High Capacity Centrifuge
In the clean room at NASA Goddard Space Flight Center in Greenbelt Md., the Global Precipitation Measurement (GPM) mission's Core satellite is steadily taking shape. Set to measure rainfall worldwide after launch in 2014, GPM's two solar panels are the latest components currently undergoing rigorous testing before being integrated with the spacecraft, a process that began seven months ago when the main structural elements went on an unusual ride. GPM moves from the clean room to the test chamber on a dolly without wheels. Compressed air is pumped out under airpads that float the Spacecraft on...