GPM

GPM content

GPM Sees Larsen-C Ice Shelf Separation
Click here to download the video (.mp4) On July 12, 2017, a giant iceberg broke off Antarctica and a variety of satellites have been used to study it ever since. The Global Precipitation Measurement (GPM) Microwave Imager (GMI) instrument can see the ribbon of relatively warm water and ice that separates the newly formed iceberg from the its parent mass of ice, the Larsen C ice shelf. While the iceberg is separated from the parent iceshelf by only a few kilometers, the GMI instrument is sensitive enough to detect the variation in temperature between this relatively warm gap and the colder ice...

GPM Views Dissipating Hurricane Fernanda

The GPM core observatory satellite had another exceptional view of hurricane Fernanda when it flew over on July 20, 2017 at 0101 UTC. GPM saw a much different hurricane than it viewed a couple days earlier. GPM's Microwave Imager (GMI) and Dual-Frequency Precipitation Radar (DPR) radar instruments found that the dissipating hurricane only contained heavy rainfall in it's northwestern quadrant. Cooler water, dry air, and southwesterly vertical wind shear had caused Fernanda to weaken. GPM's Radar revealed that powerful convective storms in that part of the dissipating hurricane were still

GPM Examines Hurricane Fernanda's Eye

The GPM core observatory satellite had an excellent view of hurricane Fernanda on July 18, 2017 at 0110 UTC. Hurricane Fernanda had weakened from it's peak wind speed of 125 kts (143.75 mph) attained on July 15, 2017 but still had maximum sustained wind speeds of about 95 kts (109 mph). This meant that Fernanda was still a powerful category two hurricane on the Saffir-Simpson hurricane wind scale. GPM's Microwave Imager (GMI) and Dual-Frequency Precipitation Radar (DPR) data showed the location of intense rainfall circling around Fernanda's eye. Measurements by GPM's Radar (DPR Ku band) showed

Forming Tropical Storm Don's Rain Checked By GPM

On Monday July 17, 2017 at 5:00 PM EDT a tropical disturbance in the Atlantic Ocean was upgraded to tropical storm Don, the fourth Atlantic Tropical storm of 2017. The GPM core observatory satellite flew above the forming tropical storm much earlier in the same day at 3:17 AM EDT (0717 UTC). GPM's Microwave Imager (GMI) and Dual-Frequency Precipitation Radar (DPR) instruments collected data that were used to evaluate precipitation within the forming tropical cyclone. GPM's Radar data swath (shown in lighter shades) covered an area to the west of the greatest amount of rainfall. GPM's radar

Heavy Downpours Cause Flooding In The Midwest

Heavy rain has resulted in significant flooding in the Midwest during the past week. Water flowing into the Fox River in northeastern Illinois caused serious flooding in that area. Central Indiana and central Ohio have also had remarkable flooding. NASA's Integrated Multi-satelliE Retrievals for GPM (IMERG) data were used to show estimates of rainfall accumulation in the Midwest during the period from July 7-14, 2017. This analysis indicates that parts of Wisconsin, Illinois, Indiana and Ohio had the highest rainfall totals during the period with over 6 inches (152.4 mm) of rain being seen in

Replacement GPM Ka/Ku L1B products (2017-07-13) for orbit 19163

PPS received new GPM Ka/Ku L1B products from JAXA and reprocessed the affected data including Level 2 and 3 data (2AKa, 2AKu, 2ADPR, 2BCMB, 2HSLH, 3GSLH) from 2017-07-13 09:36:54 -> 2017-07-13 11:09:28. If you have obtained any of these products from our archive or through a Standing Order, etc., please discard these and use the replacement products. The following files and corresponding browse products will be replaced: GPMCOR_KAR_1707130936_1109_019163_1BS_DAB_05A.h5 GPMCOR_KUR_1707130936_1109_019163_1BS_DUB_05A.h5 2A.GPM.Ka.V7-20170308.20170713-S093654-E110928.019163.V05A.HDF5 2A.GPM.Ku.V7

Rainfall In Potential Tropical Cyclone Analyzed

A tropical cyclone may be forming in the northwestern Pacific Ocean near Chichi-Jima, Japan. The GPM core observatory satellite flew directly above very strong convective storms in this potential tropical cyclone on July 13, 2017 at 0834 UTC. Rainfall in the area was analyzed using data collected by GPM's Microwave Imager (GMI) and Dual-Frequency Precipitation Radar (DPR) instruments. One area of extremely intense storms was measured by GPM's radar (DPR Ku Band) dropping rain at a rate of over 198mm (7.8 inches) per hour. Data from the GPM satellite's radar (DPR Ku band) was also used to

Weakening Tropical Storm Eugene Investigated With GPM Satellite

The GPM core observatory satellite had another excellent view of Eastern Pacific tropical storm Eugene on July 11, 2017 at 0231 UTC. Eugene was weakening as it traveled toward the northwest over progressively cooler waters. The only remaining strong convective activity was seen in Eugene's northwestern quadrant. GPM's Dual-Frequency Precipitation Radar (DPR) data revealed that some of these convective storms northwest of Eugene's center of circulation were dropping rain at a rate of more than 70 mm (2.8 inches) per hour. A 3-D view of the dissipating tropical storm was developed using GPM's

Eastern Pacific Hurricane Viewed By GPM

Hurricane Eugene formed on July 7, 2017 in the eastern Pacific Ocean south of the Baja Peninsula. Eugene was intensifying when the GPM core observatory satellite flew over on July 9, 2017 at 0236 UTC. Eugene reached it's peak power later that day with it's maximum sustained wind speeds reaching about 100 kts (115.0 mph). The center of GPM's track passed to the west of Eugene's eye. Data collected by GPM's Dual-Frequency Precipitation Radar (DPR) instrument showed that powerful storms in the northwestern quadrant of the hurricane were dropping rain at a rate of over 186 mm (7.3 inches) per hour

GPM Sees Possible Tropical Cyclone Forming

A low pressure system in the Atlantic Ocean west-southwest of the Cabo Verde Islands is being closely monitored for possible development into a tropical depression. The GPM core observatory satellite flew over this area on July 5, 2017 at 5:47 AM EDT (0947 UTC). GPM's Microwave Imager (GMI) and Dual-frequency Precipitation Radar (DPR) showed that heavy showers were located in this area. GPM's GMI data indicated that rain was coming down at a rate of greater than 44.2 mm (1.74 inches) per hour in one cluster of storms. GPM's radar (DPR Ku band) measured precipitation falling at rate of over