Articles

2019 Hurricane Season Banner
NASA has a unique and important view of hurricanes around the planet. Satellites and aircraft watch as storms form, travel across the ocean and sometimes, make landfall. After the hurricanes have passed, the satellites and aircraft see the aftermath of hurricanes, from downed forests to mass power loss.
Using GPM Data to Understand Hurricanes
The 2019 Atlantic "hurricane season" is officially upon us and runs through November 30th. Did you know that GPM data play a fundamental role in the ability to monitor existing storm activity such as capturing the location and intensity of rainfall inside a storm, as well as improving weather and precipitation forecasts through assimilation of instantaneous precipitation information? Here are a few applications of GPM data used to study hurricanes and how the data was then used for decision-making. Monitoring Irma with GPM This image shows rainfall analysis that was derived from GPM's GMI data...
GPM Constellation Banner
Co-led by NASA and the Japan Aerospace and Exploration Agency (JAXA), the Tropical Rainfall Measurement Mission (TRMM) and Global Precipitation Measurement (GPM) mission have built unprecedented international cooperation in space asset sharing and scientific collaboration to advance precipitation estimation from space for research and applications. GPM is an international satellite mission specifically designed to unify and advance precipitation measurements from research and operational microwave sensors for delivering next-generation global precipitation data products. The GPM mission
Finding Strong Storms with TRMM & GPM
Spring is severe storms season here in the US, but not everyone has NEXRAD radar coverage; however, NASA’s TRMM and GPM satellites with their onboard radars have made it possible to search the entire global Tropics and midlatitudes and systematically identify areas where there are strong to intense thunderstorms. Researchers now headed by Dr. Chuntao Liu at Texas A&M University have built a comprehensive database of “precipitation features” based on regions of contiguous radar echoes from first the TRMM and now the GPM satellite. These precipitation features can then be mined to locate areas...
TMPA Shows El Niño Conditions in the Pacific
An El Niño that began to form last fall has matured and is now fully entrenched across the Pacific. Changes in sea surface temperatures, or SSTs, brought about by an El Niño affect the atmosphere, resulting in distinctive changes in the rainfall pattern across the Pacific Basin. These changes show up as anomalies or deviations in NASA’s analysis of climatological rainfall. This map shows sea surface temperature (SST) anomalies for the Pacific Basin, shown as degrees Celsius above or below average. Credit: NOAA Climate Prediction Center. In a typical El Niño, warmer than average SSTs off of the...