Hide Body

GPM Applications: Weather
Using GPM Data for Weather, Climate, and Land Surface Modeling Variations in rain, snow, and other forms of precipitation are an integral part in everyday weather and long term climate trends. Initialization of short-term weather and long-term climate models with accurate precipitation information enhances their prediction skills and extends their skillful lead times. To get the resolution and temporal coverage to measure precipitation across the globe, we often rely on satellite information. Satellite data can play a fundamental role in our ability to monitor and predict weather systems as
GPM Applications: Water & Agriculture
Growing human population, increased demand for water and energy, and a changing climate have contributed to concerns of how freshwater resources and food supply and production may be stressed. Both water resource managers and the agricultural community need to know the amount, distribution, timing and onset of seasonal rain and snow to prepare for freshwater shortages and forecast crop yields. Remotely sensed precipitation estimates play a key role in predicting changes in freshwater supply and agricultural forecasting. Specifically, GPM provides advance precipitation measurements on regional
GPM Applications: Energy
In many areas, energy infrastructure assets, such as power plants and electric grids, can suffer damage or disruption in service due to a variety of climate-related impacts like extreme precipitation, high temperatures, drought, and rising sea levels. For example, warmer temperatures and little rainfall can cause changes in peak streamflow conditions that affect hydropower generation. Heavy precipitation events and flooding can impact a region’s energy infrastructure, including electric grid equipment, which has cascading effects on freshwater supplies and emergency services. The Energy
GPM Applications: Ecology
The impacts of climate change are already having a profound effect on ecosystems. Changes in temperature and precipitation patterns affect species and communities in diverse ways, such as declines in species and species diversity, changing interactions between species, and modification of ecosystems. Effective ecosystem management is critical to maintaining and repairing the natural environments in order to reliably support human needs while conserving and sustaining ecological services and diversity. Satellite observations can provide critical information relevant to the distribution of
GPM Catches Typhoon Yutu Making Landfall
NASA's GPM Core observatory satellite captured an image of Super Typhoon Yutu when it flew over the powerful storm just as the center was striking the central Northern Mariana Islands north of Guam. Early Thursday, Oct. 25 local time, Super Typhoon Yutu crossed over the U.S. commonwealth of the Northern Mariana Islands. It was the equivalent of a Category 5 hurricane. The National Weather Service in Guam said it was the strongest storm to hit any part of the U.S. this year. Download this video in high resolution from the NASA Goddard Scientific Visualization Studio Download video without...
GPM Applications Banner: Disasters
Too much or too little rainfall can have significant impacts on populations around the world. As population and global temperatures increase, it is crucial to understand what locations will become more vulnerable to extreme rainfall and drought and the subsequent natural hazards (e.g., landslides) and risks (e.g., lose of property) they impose. Satellites allow us to monitor changes in the precipitation, especially over oceans and regions where ground-based data are sparse. With its near-real-time precipitation estimates and near global coverage, GPM serves as an essential tool for assessing
GPM Applications: Health
Precipitation extremes, from heavy rainfall to droughts, pose great risks to a country’s economic development and human health. Standing water and flooding resulting from heavy rainfall has created societal vulnerabilities to vector and waterborne disease outbreaks such as malaria, schistosomiasis, cholera, and chikungunya, among others. Drought and extreme heat conditions have been associated with a wide range of health hazards including degraded air and water quality. These meteorological extremes also impact the growth of cities such as damaging transportation networks and infrastructures
PMM Science Banner
Water is fundamental to life on Earth, affecting the behavior of the weather, climate, energy and ecological systems as water moves through the Earth’s water cycle as vapor, liquid and ice. Precipitation, a key component of the water cycle, is difficult to measure since rain and snow vary greatly in both space and time. Obtaining reliable ground-based measurements of rain and snow often presents a formidable challenge due to large gaps between reliable instruments over land and, particularly, over the oceans. From the vantage point of space, satellites provide more frequent and accurate observations and measurements of rain and snow around the globe. This allows key insights into when, where and how much it rains or snows globally, supplying vital information to unravel the complex roles water plays in Earth systems.
IMERG Early Run Example January 24th, 2020
Precipitation data from the GPM and TRMM missions are made available free to the public in a variety of formats from several sources at NASA Goddard Space Flight Center. This section outlines the different types of data available, the levels of processing, the sources to download the data, and some helpful tips for utilizing precipitation data in your research.
NASA’s Precipitation Measurement Missions consist of TRMM and GPM. The Global Precipitation Measurement Mission (GPM) is an international satellite mission launched by NASA and JAXA on Feb. 27th, 2014 that is setting new standards for precipitation measurements worldwide. Using a network of satellites united by the GPM Core Observatory, GPM expands on the legacy of the Tropical Rainfall Measuring Mission (TRMM, 1998 - 2015) by providing high quality estimates of Earth’s rainfall and snowfall every 30 minutes.