GPM Applications Banner: Disasters

Using GPM Data for Disasters and Risk Management

Too much or too little rainfall can have significant impacts on populations around the world. As population and global temperatures increase, it is crucial to understand what locations will become more vulnerable to extreme rainfall and drought and the subsequent natural hazards (e.g., landslides) and risks (e.g., lose of property) they impose. Satellites allow us to monitor changes in the precipitation, especially over oceans and regions where ground-based data are sparse. With its near-real-time precipitation estimates and near global coverage, GPM serves as an essential tool for assessing risk and planning disaster response and recovery.  For example, near-real-time precipitation data from GPM are used within various models to help monitor and predict the path and intensity of tropical storms, vegetation fire starting and spreading, and landslide activity across the globe. The Disasters and Risk Management applications area seeks to use the GPM precipitation satellite data to improve forecasting, preparation, response, recovery, mitigation and insurance of natural hazards including tropical cyclones, floods, droughts, wildfires, landslides, and other extreme weather events.

Overview

Sections

GPM Data for Decision Making

Image

GPM's GMI / DPR provides views of hurricane Lane’s precipitation, showing intense storms near the center on August 19, 2018. Credit: Hal Pierce (SSAI/NASA GSFC).

 

The GPM Mission provides insight into how and why some tropical cyclones intensify and others weaken as they move from tropical to mid-latitude systems. The GPM Core Observatory’s GMI and DPR instruments allow scientists to study the internal structure of storms throughout their life cycle, and view how they change over time. Specifically, the GMI has the capability to measure the amount, size, intensity, and type of precipitation, from heavy-to moderate rain to light rain and snowfall. The DPR returns three-dimensional profiles and intensities of liquid and solid precipitation, revealing the internal structure of storms within and below clouds. Scientists use these instruments to track tropical cyclones and forecast their progression and to verify their tropical cyclone computer models. They also use instrument data to understand the distribution and movement of latent heat throughout the storm, particularly in the development of hot towers in the wall of clouds around the eye, which have been linked to rapid intensification. Together, these instruments will improve hurricane tracking and forecasts, which can help decision makers save lives.

View tropical cyclones articles

Image

Submerged Houston neighborhoods in the wake of Tropical Storm Harvey on August 29, 2017. Credit: Marcus Yam / Getty Images

To better understand and predict floods scientists have developed hydrological models based on how much rainfall occurs and where the water will likely go once it hits the ground. They use several satellite precipitation datasets within these models to provide near real-time estimates of when and where areas may flood on local, regional, and global scales. GPM provides frequent precipitation observations with near global coverage, of which 80% are less than 3 hours apart, exceeding the minimum deemed necessary for hydrometeorological applications. Therefore, rainfall data measured by the GPM Mission and its products, like the Integrated Multi-satellitE Retrievals for GPM (IMERG) data product, helps us better understand how changing precipitation patterns at multiple scales translates changes into hydrologic fluxes and states that can be used for flood detection and warning systems.

View floods articles

Image

Aerial view of landslide that buried Colonia las Colinas, El Salvador. Credit: USGS

Landslides are one of the most pervasive hazards in the world, resulting in more fatalities and economic damage than is generally recognized. Saturating the soil on vulnerable slopes, intense and prolonged rainfall is the most frequent landslide trigger, but seismicity, river undercutting, freeze-thaw processes, and human activity can also cause extensive and devastating landslides. Understanding where and when landslides have occurred in the past and where they may occur in the future is extremely challenging because of the lack of ground-based sensors at the landslide site to provide both triggering information (e.g. rainfall intensity and duration), and the timing and extent of the mass movement events. Precipitation measurements from remote sensing allows us to gain new insight to identify landslide activity, characterize the triggering patterns of these events spatially and temporally, assess the surface conditions for potential activity, and support the full cycle of disaster risk assessment. In particular, GPM’s more frequent and more detailed coverage of precipitation across the globe can help improve landslide model accuracy and expand potential landslide forecasting capabilities.

Learn more about GPM applications for landslides

Image

High severity fire in the western U.S. Credit: USDA Forest Service

Wildfires play an integral role in maintaining ecosystem biodiversity and structure.  Wildfires, which include any non-structure fire that occurs in vegetation or natural fuels, is an essential process that connects terrestrial systems to the atmosphere and climate.  However, the effects of fire can be disastrous, both immediately (e.g., poor air quality, loss of life and property) and through post-fire impacts (floods, debris flows/landslides, poor water quality). Wildfires can be triggered by several factors including lightning, high winds, drought, and people. 

There are several ongoing activities using remote sensing data to support pre-, active- and post-fire research, as well as the applicable use of these data and products in support of management decisions and strategies, policy planning and in setting rules and regulations. Frequent precipitation measurements from GPM along with temperature and land cover measurements from other satellites can provide key information to determine the overall dryness of an area and the potential start and spread of a vegetation fire. 

View wildfires articles
 

Image

GPM's GMI and DPR observe rainfall accumulation over the storm and 3-D vertical structure in a line of intense storms associated with the mesoscale convection system over northern New Mexico and Oklahoma on June 25, 2018. Credit: Hal Pierce (SSAI/NASA GSFC)

 

Many regions in the world experience severe weather such as thunderstorms, hail, tornadoes, and blizzards every year. Severe weather usually comes with heavy precipitation and causes unexpected hydrometeorological hazards, such as floods or landslides, which can affect thousands of people, posing a threat on life and property. Therefore, it is critically important to monitor severe weather and estimate heavy precipitation so that the occurrence and intensity of associated hydrometeorological hazards can be well identified, detected, and forecasted. Where ground-based instruments are sparse, remote sensing systems can be especially useful to observe and monitor these extreme events. Microwave sensors used by the GPM Mission allows scientists to map thunderstorm cores to gain insight into storm structures and mesoscale dynamics (e.g. thunderstorms to hurricanes) as well as detect light rain to moderate-to heavy rain and snowfall. Delivery of precipitation data from the GPM Mission is crucial for operational and research organizations to advance precipitation measurement science to improve weather forecasting that can subsequently benefit society for years to come. 

View severe weather articles

 

Image

Coast Guardsmen use a boat to assist residents during severe flooding around Baton Rouge, LA on August 14, 2016. Credit: Petty Officer 3rd Class Brandon Giles/Coast Guard

Every year, landslides wipe out roads or town, devastating floods put city blocks underwater, or a violent hurricane devastates the coastal communities. Natural hazards, like Hurricane Maria or flooding in Houston, have huge impacts on people around the world. Heavy rains and large storm systems are often significant factors that cause these disasters to have huge economic costs or even kill people. The best defense against natural hazards is accurate and early warning systems. Understanding the timing, location, and intensity of precipitation extremes using GPM data, organizations that handle disaster response and recovery can monitor, assess, and understand the damage or potential damage of a disaster. These efforts help to minimize the impact of a natural disaster as well as effectively coordinate with organizations and the public before, during, after so as many people are safe and needs are met. 

Image

A house on the Jersey Shore submerged in water in the aftermath of Hurricane Sandy.  Credit: Jim Greenhill via BU Today

The insurance and disaster management industries are closely related; dealing with the risk of natural disaster and managing the events following disasters. Reinsurance companies work to understand the need of its potential customers and the risks to which they may be exposed.  A companies’ success is generally tied to the ability to forecast the probability of natural hazards, including storms, floods, and landslides. Earth Science data and information derived from remote sensing instruments over the last decade have made it more feasible to develop climate records and understand region’s susceptibility to a natural disaster. Such data are then used to design payout triggers when natural hazards occurs. Policyholders are then compensated according to the strength of the measured event against those triggers. Specially, reinsurance companies across the world use rainfall data from GPM to develop rainfall thresholds to design insurance payouts when disasters strike. 

Disasters Featured Resources

Jump to a Year

2022 | 2021 | 2020 | 2019 | 2018

2017 | 2016 | 2015 | 2014 | 2013

2012 | 2011 | 2010 | 2009 | 2008

2007 | 2006 | 2005 | 2004 | 2003

2002

GPM Examines Hurricane Fernanda's Eye

The GPM core observatory satellite had an excellent view of hurricane Fernanda on July 18, 2017 at 0110 UTC. Hurricane Fernanda had weakened from it's peak wind speed of 125 kts (143.75 mph) attained on July 15, 2017 but still had maximum sustained wind speeds of about 95 kts (109 mph). This meant that Fernanda was still a powerful category two hurricane on the Saffir-Simpson hurricane wind scale. GPM's Microwave Imager (GMI) and Dual-Frequency Precipitation Radar (DPR) data showed the location of intense rainfall circling around Fernanda's eye. Measurements by GPM's Radar (DPR Ku band) showed

Forming Tropical Storm Don's Rain Checked By GPM

On Monday July 17, 2017 at 5:00 PM EDT a tropical disturbance in the Atlantic Ocean was upgraded to tropical storm Don, the fourth Atlantic Tropical storm of 2017. The GPM core observatory satellite flew above the forming tropical storm much earlier in the same day at 3:17 AM EDT (0717 UTC). GPM's Microwave Imager (GMI) and Dual-Frequency Precipitation Radar (DPR) instruments collected data that were used to evaluate precipitation within the forming tropical cyclone. GPM's Radar data swath (shown in lighter shades) covered an area to the west of the greatest amount of rainfall. GPM's radar

Heavy Downpours Cause Flooding In The Midwest

Heavy rain has resulted in significant flooding in the Midwest during the past week. Water flowing into the Fox River in northeastern Illinois caused serious flooding in that area. Central Indiana and central Ohio have also had remarkable flooding. NASA's Integrated Multi-satelliE Retrievals for GPM (IMERG) data were used to show estimates of rainfall accumulation in the Midwest during the period from July 7-14, 2017. This analysis indicates that parts of Wisconsin, Illinois, Indiana and Ohio had the highest rainfall totals during the period with over 6 inches (152.4 mm) of rain being seen in

Rainfall In Potential Tropical Cyclone Analyzed

A tropical cyclone may be forming in the northwestern Pacific Ocean near Chichi-Jima, Japan. The GPM core observatory satellite flew directly above very strong convective storms in this potential tropical cyclone on July 13, 2017 at 0834 UTC. Rainfall in the area was analyzed using data collected by GPM's Microwave Imager (GMI) and Dual-Frequency Precipitation Radar (DPR) instruments. One area of extremely intense storms was measured by GPM's radar (DPR Ku Band) dropping rain at a rate of over 198mm (7.8 inches) per hour. Data from the GPM satellite's radar (DPR Ku band) was also used to

Weakening Tropical Storm Eugene Investigated With GPM Satellite

The GPM core observatory satellite had another excellent view of Eastern Pacific tropical storm Eugene on July 11, 2017 at 0231 UTC. Eugene was weakening as it traveled toward the northwest over progressively cooler waters. The only remaining strong convective activity was seen in Eugene's northwestern quadrant. GPM's Dual-Frequency Precipitation Radar (DPR) data revealed that some of these convective storms northwest of Eugene's center of circulation were dropping rain at a rate of more than 70 mm (2.8 inches) per hour. A 3-D view of the dissipating tropical storm was developed using GPM's

Through rain and snow, hurricane, typhoon and monsoon, flash flood and bomb cyclone, for ten years, the joint NASA-JAXA Global Precipitation Measurement mission has measured a lot of water. GPM’s Core Observatory satellite launched from Tanegashima Space Center in Japan in early 2014, becoming the first satellite to be able to see through the clouds and measure liquid and frozen precipitation from the Equator to polar regions using a radar. Now in its tenth year of operation, we look at ten events brought to light by this groundbreaking mission. Credits: NASA's Goddard Space Flight Center

GPM IMERG precipitation rates and totals from Tropical Cyclone Freddy, Feb. 6 - March 12, 2023. Credit: NASA 

Download in high resolution from the NASA Goddard Scientific Visualization Studio

Cameras outside the International Space Station captured dramatic views of Hurricane Zeta at 12:50 pm ET October 28, as it churned 200 miles south-southwest of New Orleans packing winds of 90 miles an hour. Credit: NASA International Space Station

GPM overpass of Tropical Storm Zeta on October 25 at approximately 2:15pm CDT (19:15 UTC). Half-hourly rainfall estimates from NASA’s multi-satellite IMERG dataset are shown in 2D on the ground, while rainfall rates from GPM’s DPR instrument are shown as a 3D point cloud, with liquid precipitation shown in green, yellow and red, and frozen precipitation shown in blue and purple. Credit: NASA Goddard Scientific Visualization Studio

View an interactive 3D visualization of this overpass in STORM Event Viewer

GPM captured Dorian at 10:41 UTC (6:41 am EDT) on the 4th of September when the storm was moving north-northwest parallel to the coast of Florida about 90 miles due east of Daytona Beach.  Three days earlier, Dorian had struck the northern Bahamas as one of the most powerful Category 5 hurricanes on record in the Atlantic with sustained winds of 185 mph.  The powerful storm to ravaged the northern Bahamas for 2 full days.  During this time, Dorian began to weaken due to its interactions with the islands as well as the upwelling of cooler ocean waters from having remained in the same location...

Hide Body

Hide Date