GPM Applications: Weather

Using GPM Data for Weather, Climate, and Land Surface Modeling

Using GPM Data for Weather, Climate, and Land Surface Modeling

Variations in rain, snow, and other forms of precipitation are an integral part in everyday weather and long term climate trends. Initialization of short-term weather and long-term climate models with accurate precipitation information enhances their prediction skills and extends their skillful lead times. To get the resolution and temporal coverage to measure precipitation across the globe, we often rely on satellite information. Satellite data can play a fundamental role in our ability to monitor and predict weather systems as well as to forecast future changes to our climate and land surface. Satellite data from GPM’s suite of precipitation products are integrated into numerical weather prediction models that are operated by operational partners to provide and improve the observations from which the forecasts are then generated. Similarly, climate and land surface models use satellite precipitation observations from GPM to describe the conditions that exist today in order to project how conditions may change in the future. The Weather, Climate, and Land Surface Modeling applications area promotes the use of GPM data to help monitor existing weather activity and model future behavior of precipitation patterns and climate.

Overview

Variations in rain, snow, and other forms of precipitation are an integral part in everyday weather and long term climate trends. Initialization of short-term weather and long-term climate models with accurate precipitation information enhances their prediction skills and extends their skillful lead times. To get the resolution and temporal coverage to measure precipitation across the globe, we often rely on satellite information. Satellite data can play a fundamental role in our ability to monitor and predict weather systems as well as to forecast future changes to our climate and land surface. Satellite data from GPM’s suite of precipitation products are integrated into numerical weather prediction models that are operated by operational partners to provide and improve the observations from which the forecasts are then generated. Similarly, climate and land surface models use satellite precipitation observations from GPM to describe the conditions that exist today in order to project how conditions may change in the future. The Weather, Climate, and Land Surface Modeling applications area promotes the use of GPM data to help monitor existing weather activity and model future behavior of precipitation patterns and climate.

Sections

GPM Data for Decision Making

Image

NOAA’s Climate Prediction Center (CPC) issues extended range outlook maps for 6-10 days in the future. The above figure shows a 6-10 forecast of precipitation probability for the first week of October 2018. This product complements short-range weather forecasts issued by other components of the National Weather Service. Credit: NOAA/NCEP/CPC
 

Numerical weather prediction (NWP) is the use of computer models to predict upcoming weather. Specifically, NWP centers rely on microwave-based satellite rainfall information, such as data retrieved from GPM’s GMI, to improve short- to long-term weather forecasts and correct track forecasts for tropical cyclones. In addition, NWP centers create precipitation products for “nowcasting” weather in the immediate 1-5 hours (e.g. using near-real-time rainfall data from GPM) to meet the needs of a wider user community, including weather forecasters, hydrologists, farmers, numerical modelers, the military and the climate community. Methods for integrating rainfall data are constantly evolving and advancing, and with GPM’s advanced instruments, scientists can influence and enhance their scientific research and benefit socioeconomic activities.

Image

European Centre for Medium-Range Weather Forecast (ECMWF) Seasonal Forecast of precipitation probability. Percent probability is determined by using the predictive anomaly relative to 24 years of observed precipitation from 1993-2016. Credit: European Centre for Medium-Range Weather Forecast
 

To understand the changing climate and make future climate predictions, scientists need to use sophisticated computer models to recreate Earth’s climate conditions. Understanding current rainfall and snowfall variability, among other climate factors on regional and global scales, helps scientists model future behavior of precipitation patterns and climate. But for a system as complicated as the Earth, the models are only as good as the data provided. Satellite precipitation measurements from GPM and its predecessor TRMM provide global scale observational data sets that are comprehensive and consistent over long time periods, two characteristics scientists need to understand the relationships between different parts of the climate system. Specifically, organizations use GPM and TRMM data as input to verify and validate their seasonal and climate model simulations. The ultimate goal is to be able to predict changes in climate on time scales as short as the next hurricane season and as far into the future as changes that may occur in the coming decades or centuries. 

Image

Climate change may lead to an increase in temperatures and a decrease in snowpack within the Absaroka Range, found at the eastern edge of Yellowstone National Park. Credit: National Park Service/Neal Herbert
 

Precipitation is the fundamental driver of land surface hydrological processes and a key component of the terrestrial water cycle, which in turn affects the functioning of atmospheric and climate processes. High-resolution modeling of land surface hydrological processes requires detailed rainfall estimates as inputs to improve understanding of the state of the water cycle and impacts on land-surface processes during extreme events. Satellite precipitation data from GPM is integrated into land surface models to study surface features and how they change due to manmade and natural conditions such as urbanization and erosion. The use of GPM precipitation data together with other satellite data including soil moisture within land surface models will improve weather and hydrological prediction, which will help city planners and even decision makers save lives. 

Weather & Climate Featured Resources

Jump to a Year

2022 | 2021 | 2020 | 2019 | 2018

2017 | 2016 | 2015 | 2014 | 2013

2012 | 2011 | 2010 | 2009 | 2008

2007 | 2006 | 2005 | 2004 | 2003

2002

Screenshot of IMERG animation of Hurricane Beryl
On the morning of Sunday, June 30, Hurricane Beryl became a rare early season major hurricane when it reached Category 3 status with sustained winds of 115 mph as it was moving across the Atlantic 420 miles east-southeast of Barbados in the direction of the Leeward Islands. Then, just a few hours later at 11:35 a.m. EDT, Beryl became the earliest Category 4 hurricane on record in the Atlantic with sustained winds reported at 130 mph by the National Hurricane Center (NHC), surpassing Hurricane Dennis from the epic 2005 Atlantic hurricane season. Beryl also became historic as the strongest and
Screenshot of the IMERG animation showing rainfall totals from the atmospheric river in Jan. and Feb. 2024.
A pair of powerful atmospheric river events brought heavy precipitation across much of coastal California this week, resulting in record rainfall totals, extensive flooding, numerous landslides, hurricane-force winds, and power outages. These types of atmospheric river events that impact the U.S. West Coast are also known as the “Pineapple Express” due to their transport of moisture up from the Tropics originating around Hawaii. The first event had the greatest impact on northern and central California. It was initiated when a large low-pressure trough located in the northeast Pacific
jasper-screenshot.png
In mid-December 2023, the far north region of Australia’s Queensland state experienced heavy precipitation and flooding as a result of Tropical Cyclone Jasper, which made landfall on December 13 north of the town of Port Douglas. The Joint Typhoon Warning Center began issuing bulletins on Jasper on December 5 as it developed into a tropical depression over the Western South Pacific Ocean. By December 7, Jasper had strengthened to a Category 4-equivalent cyclone on the Saffir-Simpson scale as it tracked southwestward. By the time it made landfall on December 13, Jasper’s winds had weakened back
GPM Overpass of Hurricane Otis
After rapidly intensifying overnight, Hurricane Otis made landfall near Acapulco, Mexico around 1:25 a.m. CDT (06:25 UTC) on Wednesday Oct. 25 as a powerful Category 5 hurricane. Otis had maximum sustained winds estimated at 165 mph by the National Hurricane Center (NHC), making it the first Category 5 as well as the most powerful storm to hit the Pacific coast of Mexico on record. Otis formed into a tropical depression (TD 18-E) on the morning of Sunday Oct. 22 about 530 miles (850 km) south-southeast of Acapulco from a broad area of low pressure. The depression was moving slowly northward
GPM Overpass of Cyclone Bolaven
Typhoon Bolaven began as a tropical depression over the West Pacific Ocean on Oct. 7, 2023. On Oct. 10, Bolaven became a Typhoon and passed over the Mariana Islands as it tracked to the northwest. Bolaven then rapidly intensified over 12 hours from a Category 1 to a Category 5 storm on the Saffir-Simpson scale, starting around 12 UTC on Oct. 10. Several factors contributed to the rapid intensification, including modest shear in the atmosphere and warm sea-surface temperatures. This animation shows precipitation within Typhoon Bolaven around the time that rapid intensification began. The global
A grid showing many examples of the data GPM has collected in its 10 years of operation.
The joint NASA / JAXA Global Precipitation Measurement (GPM) mission has been tracking rain and snow around the globe for over 10 years, providing valuable insights into Earth's weather and climate. Now in its tenth year of operation, we look at ten events brought to light by this groundbreaking mission.
GPM 10-year banner
Too little or too much precipitation can mean the difference between life and death. Join us as we learn about the impacts of having too much or too little precipitation and the disasters that can occur as a result. Discover what we are learning about the connection between extreme weather events and climate change. Find out the many ways that NASA is helping us monitor and respond to natural hazards and disasters.
GPM 10-in-10 Climate Banner
May 9, 2024, 8:00 p.m. ET Overview In this webinar we will explore Earth’s weather and climate through the lens of NASA. Learn the difference between weather and climate, why it’s challenging to accurately predict the weather, and explore different weather and climate models. Also, learn how NASA’s “Earth to Sky” program is engaging with interpreters across the U.S. to collaborate and share this and other information with the public. Resources Resource Packet Speakers Dr. Marshall Shepherd Dr. J. Marshall Shepherd is a leading international weather-climate expert and is the Georgia Athletic
Screenshot of the IMERG animation showing rainfall totals from the atmospheric river in Jan. and Feb. 2024.
A pair of powerful atmospheric river events brought heavy precipitation across much of coastal California this week, resulting in record rainfall totals, extensive flooding, numerous landslides, hurricane-force winds, and power outages. These types of atmospheric river events that impact the U.S. West Coast are also known as the “Pineapple Express” due to their transport of moisture up from the Tropics originating around Hawaii. The first event had the greatest impact on northern and central California. It was initiated when a large low-pressure trough located in the northeast Pacific
Map of IMERG precipitation estimates from recent flooding rainfall in Greece.
On Sept. 4, 2023, a low-pressure system developed over southeastern Europe that would lead to devastating floods over Greece and other parts of the region. The system was given the name “Daniel” by local meteorological agencies. Daniel was dynamically driven by strong cyclonic flow in the upper-level winds over southeastern Europe. The upper-levels winds combined with low-level winds from the northeast which supplied moisture from the unusually warm waters of the Aegean and Black Seas to central Greece. According to satellite infrared and microwave estimates from NASA's MUR and NOAA’s OISST v2
IMERG Precipitation Anomalies
Rain gauges are plentiful around the United States, but that’s not the case elsewhere in the world – particularly over oceans and sparsely populated areas. That means scientists and other data users have to rely on satellite measurements – such as those provided by NASA’s Global Precipitation Measurement (GPM) mission – to fill in the gaps. The list of data users now includes the U.S. Air Force’s 557th Weather Wing. For the first time, the Air Force meteorology unit has integrated the Integrated Multi-satellite Retrievals for GPM (IMERG) algorithm into its operational weather forecasts and
Screenshot of the High-Impact Weather Assessment Toolkit (HIWAT),
Bangladesh has a long history of deadly and costly storms. Because these storms are so localized, they can be notoriously difficult to forecast, especially without access to the most advanced weather prediction technology. Researchers have created a new tool to boost the country’s ability to forecast severe weather. The SERVIR program - a joint initiative of NASA, USAID, and leading geospatial organizations in Asia, Africa, and Latin America - and the Bangladesh Meteorological Department ( BMD ) recently launched the High-Impact Weather Assessment Toolkit ( HIWAT ), a web-based tool that
IMERG rainfall totals in South Africa, April 5 - 18, 2022.
An upper-level area of low pressure tapped into the warm waters of the South Indian Ocean to bring heavy rains and flooding to parts of South Africa during the second week of April. The event unfolded when an upper-level trough of low pressure embedded within the midlatitude westerlies traversed the southern part of Africa from west to east. As the trough approached the east coast of South Africa, an area of low pressure became detached from the main flow, this “cut off” low then drifted over the warm waters of the Agulhas Current, which channels warmer waters from the tropical Indian Ocean
IMERG Rainfall Totals from Australian :"Rain Bomb" in March 2022
The below animation shows surface rainfall estimates from NASA’s IMERG multi-satellite precipitation product for the week starting on Feb. 22, 2022 at 0000 UTC and ending on Feb. 28, 2022 at 2330 UTC. Areas shaded in blue and yellow show three-hour average snapshots of IMERG rain rates every half-hour overlaid on cloudiness (shown in white/gray) based on geosynchronous satellite infrared observations. Below the rain rates and cloudiness data, IMERG rainfall accumulations are shown in green and purple. Tropical Cyclone Anika’s track is shown with a gray line based on data from the U.S. Navy-Air
IMERG rainfall totals from the Nov. 2021 atmospheric river.
The Pacific Northwest coast saw two atmospheric rivers (ARs) bring heavy rains from Nov. 10-16, 2021, resulting in severe flooding, landslides, and damage to infrastructure in the British Columbia province of Canada. ARs are long, narrow corridors of water vapor that travel vast distances above the ocean from warm, tropical regions to higher latitudes, where they often release their moisture as rainfall when they reach land areas. While ARs occur across the globe, this year has been notable for several strong events that have impacted the Pacific Northwest coast. The two atmospheric rivers in

Through rain and snow, hurricane, typhoon and monsoon, flash flood and bomb cyclone, for ten years, the joint NASA-JAXA Global Precipitation Measurement mission has measured a lot of water. GPM’s Core Observatory satellite launched from Tanegashima Space Center in Japan in early 2014, becoming the first satellite to be able to see through the clouds and measure liquid and frozen precipitation from the Equator to polar regions using a radar. Now in its tenth year of operation, we look at ten events brought to light by this groundbreaking mission. Credits: NASA's Goddard Space Flight Center

The most detailed view of our daily weather has been created using NASA's newest extended precipitation record known as the Integrated Multi-satellitE Retrievals for GPM, or IMERG analysis. The IMERG analysis combines almost 20 years of rain and snow data from the Tropical Rainfall Measuring Mission (TRMM) and the joint NASA-JAXA Global Precipitation Measurement mission (GPM). The daily cycle of weather, also known as the diurnal cycle, shapes how and when our weather develops and is fundamental to regulating our climate.

Music Credits: "Battle For Our Future" and "Wonderful Orbit" by Tom...

NASA engineer Manuel Vega can see one of the Olympic ski jump towers from the rooftop of the South Korean weather office where he is stationed. Vega is not watching skiers take flight, preparing for the 2018 PyeongChang Winter Olympics and Paralympic games. Instead, he’s inspecting the SUV-sized radar beside him. The instrument is one 11 NASA instruments specially transported to the Olympics to measure the quantity and type of snow falling on the slopes, tracks and halfpipes. NASA will make these observations as one of 20 agencies from eleven countries in the Republic of Korea as participants...

NASA researchers now can use a combination of satellite observations to re-create multi-dimensional pictures of hurricanes and other major storms in order to study complex atmospheric interactions. In this video, they applied those techniques to Hurricane Matthew. When it occurred in the fall of 2016, Matthew was the first Category 5 Atlantic hurricane in almost ten years. Its torrential rains and winds caused significant damage and loss of life as it coursed through the Caribbean and up along the southern U.S. coast. 

Music: "Buoys," Donn Wilkerson, Killer Tracks; "Late Night Drive," Donn...

NASA scientists can measure the size and shape distribution of snow particles, layer by layer, in a storm. The Global Precipitation Measurement mission is an international satellite project that provides next-generation observations of rain and snow worldwide every three hours.

Hide Body

Hide Date